Advances in in vivo Non-invasive Delivery of Gentamicin

Arka Bhattacharjee1,*, Arpan Chakraborty1, Nitai Chand Chaulya2, Goutam Mukhopadhyay3

1Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, INDIA.
2Department of Pharmaceutical Technology, Gupta College of Technological Sciences, Asansol, West Bengal, INDIA.
3Department of Pharmaceutical Technology, BCDA College of Pharmacy and Technology, Kolkata, West Bengal, INDIA.

ABSTRACT

Introduction: Parenteral administration of gentamicin is a globally known therapeutic strategy for severe infections, including severe community acquired pneumonia, complex severe acute malnourishment, neonatal and pediatric sepsis. The drug is also prescribed as an ophthalmologic anti-infective. In most cases, the therapeutic course necessitates frequent bolus medication doses, lengthy hospitalization, and ongoing therapeutic monitoring; hence a qualified healthcare provider is required. Objectives: Gentamicin is a hydrophilic drug and has a short half-life, making it difficult to achieve appropriate systemic concentrations when taken parenterally. The use of innovative oral medication delivery systems is justified in this context. Furthermore, new delivery strategies can increase the membrane permeability of gentamicin. Conclusion: The current analysis provides a detailed summary of gentamicin’s research history as well as several developing drug delivery strategies that have been explored. The examples included in the paper give important evidence on innovative delivery systems for gentamicin in the domain of antimicrobial investigations opening a way for upcoming therapeutics that may provide better clinical outcomes.

Keywords: Gentamicin, Non-invasive, Aminoglycoside, Bioavailability, Permeability.

INTRODUCTION

Gentamicin Sulphate (GS) belongs to the category of antibiotics, namely aminoglycosides, the first antibiotic group to be established as antibacterials, with the initial discovery of streptomycin by Waksman in the year 1943. Studies report a short half-life for GS (2-4 hr). Since GS initially has poor penetration capacity, oral absorption is essentially non-existent. Depending on the severity of the illness, the sulphate salt of the medication is injected intramuscularly or (slowly) intravenously once or twice daily. The bactericidal activity of GS is concentration-dependent. When GS reaches the site of action, it enters the cytosol via active transport, hampers ribosomal translation by attaching to the 30S subunit, and ultimately results in cell death. Protein generation is impeded by obstruction of the initiation complex for peptide formation. Misreading of m-RNA results in non-functional proteins, or polysome disintegration into non-functional monosomes. Amid the diverse varieties of antibiotics, this category has obtained wide-ranging consideration owing to their wide-scale antibacterial effectiveness and favourable chemical and pharmacokinetic features. The basic and hydrophilic nature of the compounds is due to their configuration, comprised of aminocyclitol rings with single or few amino or sugar groups. They are recognized as polyaminated pseudo saccharides owing to their exclusive stereochemistry of amino and hydroxyl groups in their structure. Initially, the antibiotics were acquired from Streptomyces griseus and Micromonospora purpurea by fermentation of aerobic microbes residing in soil. Thereafter, different natural and synthetic aminoglycosides arose, including gentamycin, amikacin and tobramycin, the most frequently employed antibiotics administered via parenteral route. These are extensively utilized in the managements of sepsis and bacterial infection of pulmonary or cardiac concern and urinary tract. It is assumed that aminoglycosides well resist enzymatic inactivation. Conversely, they are associated with nephrotoxicity and ototoxicity issues, which compel pharmacological restrictions. The occurrences of microbial resistance to alternative frequently utilized antibiotics have compelled the aminoglycoside group of antibiotics to continue as a precious and anticipated preference for managing crucial infections, regardless of the adverse effects. It is reported that the difficulty in curing nosocomial infections triggered by gram-negative bacilli is increasing due to the advent of numerous resistance mechanisms, which also restrict the use of a few of the finest drugs in our medical resources. On the worse side, there are a minority of drugs that are functional against multidrug-resistant nosocomial gram-negative organisms.

DOI: 10.5530/ijper.57.3.379

Copyright Information: Copyright Author (s) 2023 Distributed under Creative Commons CC-BY 4.0
Publishing Partner: EManuscript Tech. (www.emanuscript.in)
Consequently, many clinicians are considering the utilization of aminoglycoside antibiotics once more.9

The History of Aminoglycosides - Gentamicin

Streptomycin was the first ever aminoglycoside introduced in clinical practice during the mid-1940s. It was obtained from *S. griseus*. Waksman and his co-workers are known for this discovery in 1943. The drug was unbeaten in treating tuberculosis. Followed by streptomycin, numerous new aminoglycosides were introduced, which include neomycin in 1949 (from *S. fradiae*), gentamicin in 1963 (from *Micromonospora purpurea*), kanamycin in 1957 (from *S. kanamyceticus*), tobramycin in 1967 (from *S. tenebrarius*) and sisomicin in 1970 (from *M. inyoensis*).10 All aminoglycosides perform good bactericidal efficacy against most gram-negative and few gram-positive bacteria. Since these first-generation aminoglycosides were used extensively, resistance to them developed more often, and some toxicities, notably nephrotoxicity and ototoxicity, grew more pronounced.11 In 1963, gentamicin was discovered, and after that, it got introduced as parenteral dosage in 1971; it has been broadly utilized in the medicinal domain. The USFDA authorizes gentamicin prescription for routine infection treatment due to *Klebsiella pneumoniae*, *Escherichia coli*, *Serratia marcescens*, *Citrobacter* spp., *Enterobacteriaceae* spp., *Pseudomonas* spp.: *Staphylococcus*; bacterial meningitis; neonatal sepsis; septicemia; ophthalmic, orthopedic, dermal and/or subcutaneous infections; infective endocarditis; peritonitis caused by *Pseudomonas* and additional organisms (gram-negative); peritonitis caused due to gastrointestinal infections; respiratory; and urinary tract infectious disease.12 As per WHO 21st EML (World Health Organization Essential Medicines Lists), 2019, gentamicin is categorized under key access group antibiotics. This group comprises antibiotics that are effective against an extensive array of commonly encountered liable pathogens and show lower resistance potential compared to other antibiotics. These antibiotics are mentioned as essential first or second empiric treatment choices for infectious syndromes reviewed by EML expert committee and are enlisted as individual medicines on the Model Lists to improve access and promote appropriate usage. They are crucial antibiotics that should be extensively available, reasonably priced and of reliable quality. GS (2-mL vial injection: 20 mg; 80 mg) is the first preferred drug for – sepsis in infants and complicated severe acute malnourishment and community-acquired pneumonia (severe), whereas the second option drug for gonorrhoea and surgical prophylaxis. Its use is also prescribed in ophthalmological preparations (eye drops 0.3% as a sulfate solution).13,14

\(\beta\)-lactams, carbapenems, and fluoroquinolones, a type of wide-spectrum antibiotics with fewer adverse effects, got introduced during the 1970s, and this caused a reduced interest in exploring new aminoglycosides. Isepamycin in 1988 and arbekacin in 1990 are the last known aminoglycosides to be launched in the market, reducing their effectual shares to 2.7% over a decade ago. Soon after, the origination of resistant strains provoked the use of aminoglycosides in managing severe bacterial nosocomial infections.15 The hydrophilic basic aminoglycosides are cationic and fairly steady at pH 6 to 8. The antibiotics are highly stable metabolically and get distributed in the extracellular space (one-fourth of the lean body mass). Approximately 95% of aminoglycosides are excreted through the kidneys. They have poor membrane permeability due to their polarity.16 BNF (British National Formulary) and the US (United States) lists streptomycin, gentamicin, neomycin, tobramycin, and amikacin for clinical purpose, and apart from these, aminoglycoside kanamycin as authorized by the USFDA (US Food and Drug Administration).17

Obstacles in Delivery of Gentamicin Sulfate

GS is ototoxic and nephrotoxic; hence it must be administered slowly as an infusion drip or intravenous bolus; this is more challenging in poorly equipped medical management setups, particularly in nations which are developing, where access to safe parenteral supplies is inadequate and disease spread through re-use of needles and incorrect sharp disposal is common. Furthermore, gentamicin parenteral administration necessitates safe monitoring and qualified health staff for dosage calculation, which is challenging in an outpatient case. In a specialised demographic, such as paediatrics, discomfort from needle prickling, infections at the injection site, and phobia of needles, i.e. trypanophobia, all lead to decreased patient compliance. Trypanophobia affects about one-fourth of adults, resulting in inadequate medical care.18,19

Gentamicin Quantitative Structure Bioavailability Relationship

The parameters that impact the oral bioavailability of a drug molecule encompass the number of hydrogen donors, the presence of heavy atoms, and the occurrence of aminopyridine, benzoquinone and tetrazole groups. ’Rule of five’ is a competent tool for rapidly sorting out drug moieties with inferior absorption properties.20 The rule is termed so, as the marginal value for each of its parameters having values either near to 5 or multiple of 5.21 This rule claims that if any drug molecule complies with any two of the following parameters given in Table 1, then its intestinal absorption will possibly be unsatisfactory. Adhering to this rule Gentamicin (refer to Figure 1) falls under drugs with poor absorption as, shown in Table 1.

Worldwide Consumption

A commonly used medication is gentamicin.22 Table 2 lists the oral and parenteral antibiotic entities that make up three-fourths of all antibiotic utilization, the number of countries where they were included on the country-specific DU75 (drug utilization 75%) list, and the median proportional consumption (% of total defined daily doses) in those countries.26
Bhattacharjee, et al.: Non-invasive Delivery of Gentamicin

Ozturk et al. reported that urinary tract infections, which affect more than 150 million individuals yearly due to community acquisition, are among the most common infections seen in clinical treatment. Future gentamicin consumption is predicted to increase due to the increasing load of these infections.\(^{27}\)

In 2020, the aminoglycosides market was worth USD 1,673.79 million, and within six years, it is assumed to attain a hike of USD 451.41 million, indicating a 4.11% compound annual growth rate. Gentamicin is typically selected as the first-line medication for many bacterial illnesses in both emerging and developed countries. The drug’s use is particularly prevalent in underdeveloped countries, providing a cost-effective treatment option for various infectious disorders. With more doctors using it in combinations, gentamicin demand is rising for various bacterial diseases.\(^{28}\)

Need For Gentamicin As Non-invasive Formulation

Cefazolin (47%), gentamicin (33%), and ceftriaxone (20%) were the most commonly administered antibiotics in a critical care unit, according to surveillance of parenteral antibiotic use.\(^{29}\) Orally, the drug moiety is not absorbed significantly. Gentamicin is therefore administered Intramuscularly (IM), Intravenously (IV) and subcutaneously.\(^{30}\) But it is noteworthy that aforementioned parenteral routes have drawbacks such as a) higher frequency of anaphylactic reactions than with many alternative routes, b) chances of phlebitis or infections at the site of injection, c) painful route for patients as compared to most of the other routes, d) chances of air embolism or vascular clot is there as an outcome of the vascular wall damage, e) once administered removing or lavaging drug is impracticable, except by dialysis, f) difficult in many situations, g) likelihood severe adverse reactions may be the outcome of rapid injection rate h) injection procedure is associated with patient’s dislike and psychological discomfort.\(^{31}\)

According to Murgitroyd et al. (2015), the most significant disadvantage of gentamicin administration with substantial clinical consequences is the high incidence of under-dosing. Less than 25% of patients on multidose regimens (for sepsis care) received appropriate antibiotic therapy. The most often noted reason for non-administration in the research was a lack of IV access.\(^{32}\)

Resistance is determined by the diversity of genotypes in the huge bacterial population and the selective pressures exerted along the antibiotic concentration gradients in the body. It has been proposed that resistance can be circumvented by paying attention to dosage because dosing with an AUIC 0-24/MIC ratio of a minimum of 100 seems to slow the development of bacterial resistance. An antibiotic with strong bactericidal efficacy and tissue and/or serum concentrations more extensive than the MIC or, better, minimal bactericidal concentration throughout the dosage period is equally beneficial in preventing antibiotic resistance development.\(^{33,34}\)

Table 1: Parameters for evaluating permeability of Gentamicin (Rule of five).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values as per Rule of five</th>
<th>Values of Gentamicin</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Weight</td>
<td>> 500</td>
<td>477.6 (C1)</td>
<td>22</td>
</tr>
<tr>
<td>Count of H- Bond Donors</td>
<td>> 5 Nos</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>Count of H- Bond Acceptors</td>
<td>>10 Nos</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>C log P</td>
<td>>5.0</td>
<td>-3.77</td>
<td>24</td>
</tr>
<tr>
<td>PSA</td>
<td>>4.15</td>
<td>174.4Å²</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 1: Chemical structure of gentamicin.

Table 2: Survey report on Gentamicin Consumption 26.

<table>
<thead>
<tr>
<th>Region surveyed by WHO</th>
<th>No. of countries and areas where it appears in the country’s DU75</th>
<th>Median proportion (Interquartile range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>African Region</td>
<td>¼</td>
<td>67.8</td>
</tr>
<tr>
<td>Regions of America</td>
<td>3/6</td>
<td>10.4(9.4-13.6)</td>
</tr>
<tr>
<td>European Region</td>
<td>25/46</td>
<td>7.9 (5.5-14.0)</td>
</tr>
<tr>
<td>Eastern Mediterranean Region</td>
<td>1/3</td>
<td>5.4</td>
</tr>
<tr>
<td>Western Pacific Region</td>
<td>2/6</td>
<td>12.2(8.4-16.0)</td>
</tr>
</tbody>
</table>
Non Penetrative Routes For Gentamicin

Oral

The oldest and most favoured oral route of drug administration and delivery is associated with numerous successful treatments for numerous diseases. Owing to its potential benefits encompassing a competently recognized delivery system, patient acceptance, convenience, affordability, and non-invasiveness, it has been the most chosen and desired drug delivery route in the sphere of pharmaceutical technology. Oral medicines can circumvent the need for penetrative drug delivery via needles. The problems associated with drug bioavailability are one of the primary concerns of formulation research and development. The oral formulation strategies are provided in Table 3.

Gentamicin is inferiorly absorbed from the intestinal tract and is ordinarily obtainable as topical preparations and injectables. Gentamicin oral formulations have already been studied to manage severe diarrhoea in newborns and other gastrointestinal bacterial infections, including infection by Klebsiella pneumoniae. Various drug delivery systems are employed to enhance the bioavailability of many low water-soluble and inferiorly permeable drugs.

<table>
<thead>
<tr>
<th>Formulation approaches</th>
<th>Model</th>
<th>Observation/ Comments</th>
<th>References.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly lactic co-glycolic acid nanoparticles surface modified with chitosan.</td>
<td>Rabbit</td>
<td>Sustained release oral dosage. Potent for oral absorption.</td>
<td>37</td>
</tr>
<tr>
<td>Multicomponent-crosslinked carboxymethyl cellulose.</td>
<td>-</td>
<td>Controlled release. Smart pH-sensitive platform for delivery via oral route.</td>
<td>38</td>
</tr>
<tr>
<td>Enteric capsule:Labrasol- GM solution and suspension.</td>
<td>Beagle dogs</td>
<td>Labrasol solution provides higher plasma drug levels compared to suspension.</td>
<td>39</td>
</tr>
<tr>
<td>Labrasol-SMEDDS, and solidified with Florite RE.</td>
<td>Rats</td>
<td>Florite RE is helpful for oral solid delivery system of drugs with poor absorption properties.</td>
<td>40</td>
</tr>
<tr>
<td>Self-nanoemulsifying formulations configured with PEG 4000.</td>
<td>-</td>
<td>High in vitro diffusion-reliant permeation obtained.</td>
<td>41</td>
</tr>
<tr>
<td>Diethyl ether fraction of Labrasol.</td>
<td>Rat colon</td>
<td>Permeation is better in case of diethyl ether extract compared to Labrasol or its fractions, i.e. hexane, ethyl acetate and aqueous.</td>
<td>42</td>
</tr>
<tr>
<td>SMEDDS containing Softisan and Precirol as Lipid Matrix.</td>
<td>-</td>
<td>Likely be useful for oral route for delivery.</td>
<td>43</td>
</tr>
<tr>
<td>Phospholipon 90H (P90H)-based PEGylated microscopic lipospheres.</td>
<td>-</td>
<td>Lipospheres may be useful in oral gentamicin administration.</td>
<td>44</td>
</tr>
<tr>
<td>Coadministration with cetomacrogol (polyethylene glycol 1000 monocetyl ether).</td>
<td>Rats</td>
<td>Giving rectally effected in a mean peak gentamicin blood concentration of 8.2 ug/mL, contrasted to 16.5 ug/mL, when the mixture was provided orally.</td>
<td>45</td>
</tr>
<tr>
<td>Chitosan nanoparticles employing dextran sulphate as a counterion.</td>
<td></td>
<td>Possibly will offer a potential oral drug delivery formulation.</td>
<td>46</td>
</tr>
<tr>
<td>Labrasol Micelle.</td>
<td>Rats</td>
<td>Enhanced membrane permeability.</td>
<td>47</td>
</tr>
<tr>
<td>Labrasol microemulsion.</td>
<td>Rat</td>
<td>Augmentation of % BA - 54.2%.</td>
<td>48</td>
</tr>
<tr>
<td>PEGylated solidified reverse micellar solutions based solid lipid microparticles.</td>
<td>Rats</td>
<td>A permeation flux of 5.239 μg/cm² min plus a permeation coefficient of 1.781. 10⁻⁶ cm/min within 7 hr was obtained.</td>
<td>49</td>
</tr>
<tr>
<td>Saponin extracted from Acanthophyllum squarrosum (ATS), Quillaja saponaria (QTS) and Tween 20.</td>
<td>Brush border membrane vesicle</td>
<td>Tween 20 was found to put forth best transportation augmenting upshot (3.33 μg/mL drug concentration).</td>
<td>50</td>
</tr>
<tr>
<td>Glycoosteroid drug transport agent.</td>
<td>Rats</td>
<td>When injected in ileum, in absence of TCOO2: -C max of 0.6μg/mL, after 7 min with decline in levels after 4 hr. With 10mM TCOO2, peak plasma level 7.3 μg/mL within 20 min and maintained for 90 min with high levels 5.5 μg/mL for 4 hr.</td>
<td>51</td>
</tr>
</tbody>
</table>
oral delivery of gentamicin and other aminoglycosides include multicomponent-crosslinked carboxymethyl cellulose hydrogel, self-micromulsifying drug delivery system using labrasol, self-nanoemulsifying formulations structured with PEG (polyethylene glycol) 4000, PEGylated solidified reverse micellar solutions -based solid lipid microparticles, phospholipon 90H (P90H)-based PEGylated lipospheres etc.\(^{57,58}\)

Nasal

Numerous times nasal route has proven to be a replacement for administering drugs whose systemic availability is limited to intravenous administration. This feature is attributed to the easily accessible huge vascular surface area with porous endothelial membrane, allowing the circumvention of first-pass metabolism.\(^{59,60}\)

Bile salts, i.e. sodium cholate and sodium taurodeoxycholate were reported to enhance intranasal gentamicin absorption by 41 ± 16% and 34 ± 13% in rabbits.\(^{61}\) Microparticles employing chitosan hydroglutamate (CH) plus hyaluronic acid (HA) reported bioavailability of 1.1%, 2.1%, 31.4%, 42.9% and 23.3% for pure drug nasal solution, dry powder, microparticulate systems of CH, HA/CH and HA respectively in rabbits, the microparticles also exhibited an enhanced drug permeation in 16HBE14o- cell lines.\(^{62}\) Use of transporter DS-1 3-o-β-D-galactopyranosyl-(1→2)-β-d-xlyopyranosyl-(1→3)-β-D-glucuronopyranosyl-que illaic acid 28-o-β-D-apifuranosyl-(1→3)-β-D- xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-β-D-fucopyranoside has exhibited a 59.7% intranasal absorption in rats.\(^{63}\)

Pulmonary

In the preceding two decades, drug delivery via the pulmonary route has acquired immense attention. This non-invasive route of drug delivery offers access to both the local area and systemic circulation, with the lungs as the primary part of the respiratory system. Pulmonary drug delivery, i.e., inhalation therapy, offers numerous benefits compared to alternate routes of drug administration, such as it provides a huge vascular surface area present in alveolar sacs making it very suitable for drug absorption.\(^{64}\)

In rats, chitosan/fucoidan nanoparticles via the intratracheal route (0.27 mg/kg) presented a better AUC (Area Under Curve) and minimum inhibitory concentration ratio compared to (0.5 mg/kg) free drug by IV. It can be utilized in pneumonia treatment.\(^{65}\)

Studies have demonstrated that compared to the IV route, NanoGENT™ (80% gentamicin sulfate) inhaler can deliver a higher amount of gentamicin to the respiratory tract. NanoGENT™ (utilizing Respirics ACU-30™ dry powder inhaler) delivers 10-15 mg drug with each 25-mg dose.\(^{66}\)

Transdermal

The transdermal route is defined as one in which the drug is applied to the skin utilizing any device or patch to deliver an adequate amount of the drug through the layers of skin to provide a systemic effect. This route has numerous theoretical benefits, such as bypassing hepatic metabolism of drug and circumventing gastrointestinal irritation.\(^{66}\)

Dissolving microneedle (500 µm) arrays of gentamicin made up of sodium hyaluronate and polyvinylpyrrolidone were able to permeate a skin simulant to a depth of 378 µm. *In vitro*, Franz Cell study exhibited significant drug delivery over 6 hr. This system was reported to deliver the drug as a replacement for IV/IM route without requiring skilled personnel for dose administration.\(^{67}\) HPMC (hydroxypropyl methylcellulose) matrix-type transdermal patches with gentamicin-loaded PLGA (poly D,L-lactic-co-glycolic acid) nanoparticles are also reported to be effective drug delivery systems as found in case of animal models.\(^{68}\) Gentamicin microneedle patch has been recognized as a practicable product innovation by the United Nations Commission for Lifesaving Commodities for Women and Children.\(^{69}\) The costs of manufacturing of novel transdermal hydrogel microneedle patches are not yet known.\(^{66}\) Patches of PURASORB® polymers amplified permeation flux of 5.161 µg/cm²·h and permeation coefficient of 1.032 x 10^−6 cm/h through rat's skin.\(^{70}\)

Rectal

From a pharmaceutical or clinical viewpoint, drug administration via the oral route often turns out to be impracticable. In such instances, the rectal route might serve as a rational alternative for local and systemic drug delivery.\(^{70}\) Gentamicin, due to its low permeability, is reported not to be absorbed when administered rectally in the form of two different liquid phosphate-buffered enema formulations (with and without 1.8 mM lauric acid) and a suppository of cocoa butter base as evaluated in a preclinical study in neonatal minipig model.\(^{71}\) Though the use of surfactants (non-ionic) has shown positive outcomes. A formulation comprising 12 mg gentamicin, 1 g cetomacrogol and 140 mg of PEG 400 is reported to produce a mean peak gentamicin blood level of 8.2 µg/mL when given rectally in rats.\(^{66}\) Owing to the fast pharmacological effect, plasma levels and therapeutic efficacy are much higher than oral delivery of the same drug and dose level.\(^{72}\) Hollow-type suppository using sodium octanoate, sodium hexanoate and glyceryl-1-monooctanoate is found to enhance drug absorption in rabbits.\(^{72}\) Similar type suppositories of GS and sodium salicylate or sodium caprylate in rabbits exhibited % BA of the drug with salicylic acid 58% and with sodium caprylate 59%. Without these agents, drug absorption was nil.\(^{72}\) Aqueous microemulsions of the drug comprising 20 mg/mL^-1 phenothiazine in rats improved % BA to 74–146%.\(^{75}\)
Quite a few investigations on the rectal distribution of GS in animal models have been performed, signifying augmentation in absorption utilizing different adjuvants. In addition, other studies have looked at how fatty acids (sodium octanoate, sodium hexanoate, and glycerol-1-monoctanoate) and phenothiazines can improve the rectal absorption of gentamicin formulations. These trials' absorption findings have been positive, pointing to the rectal route as a possible method for gentamicin administration.

Non-invasive Drug Delivery Systems For Other Aminoglycosides

Tobramicin's oral bioavailability is affected by fasting. According to a study, mice subjected to a 15-hr fast had significantly exhibited (25-fold greater) improved oral bioavailability. Since all aminoglycosides are hydrophilic polycations with comparable structural characteristics, it is conceivable that all drug molecules belonging to this group will be absorbed during conditions of physiological fasting.76

Considering formulation approaches, aminoglycosides (as shown in Figure 2) other than gentamicin have also been studied for bioavailability enhancement. Reported formulations for non-invasive delivery of aminoglycosides other than gentamicin are tabulated in Table 4.

DISCUSSION

Generally, it has been observed that permeation enhancement via formulation approaches includes nanoparticles, hydrogels or the use of agents such as bile salts, surfactants, lipids etc.

Bile salts and their ionized form are characteristic amphiphatic molecules structurally having a steroidal nucleus bearing a hydrophilic part with hydroxyl units (concave a-side) plus a lipophilic part with methyl units (convex b-side), as shown in Figure 3. This specific structure crafts bile salts distinguishable from traditional pharmaceutical surfactants.80,84

Dietary fats are primarily emulsified and solubilized by the action of bile salts and acids by developing mixed micelles.85 Bile salts get compressed in the middle of the phospholipids' polar heads, with their hydrophilic part heading the aqueous phase.86 The membrane permeation enhancing the ability of bile salts helps lipophilic drug moieties to cross biological membranes, thereby enhancing their bioavailability.87 Duchateau et al. 1986 reported that intranasal coadministration of gentamicin with bile salts in rabbits could augment the bioavailability of the drug significantly. The ability of the trihydroxy bile salts (cholate, taurocholate, and glycocholate) to promote absorption increases with their hydrophobicity. Sodium salts of cholic and taurodeoxycholic acid were recognized to be potent and capable absorption promoters.61

One of the analogues of cholic acid TCO₂ [methyl 3-β-amino-7α, 12α-di (1’ α-glucosyl)-5β-cholate] was reported to enhance the intestinal bioavailability of the drug.61

A wide range of surfactant-based permeation enhancers can alter the integrity of bio-membranes. This absorption enhancer class comprises non-ionic surfactants, acylated amino acids, medium-chain fatty acids, acylcarnitines, bile salts and a spectrum of others (e.g. macrogol-8 glycerides, sucrose laurate, polyoxyethylene-8 lauryl ether, etc.). Clinical investigation for numerous surfactants, such as sodium caprylate, sodium caprate, lauroyl-carnitine chloride, etc., has been performed to study the delivery of macromolecules via the oral route.88 The absorption enhancing potentiality of non-ionic surfactants is impacted by the hydrophilic-lipophilic balance as well as the dimensions and structure of both the polar group and the non-polar alkyl chain. The lipid bi-layer can easily be penetrated by a surfactant of a medium-length alkyl chain because, in an aqueous solution, it has a greater concentration of monomers and elevated critical micellar concentration compared to a lengthy alkyl chain surfactant. Labrasol is a non-ionic surfactant having a C8 and C10 alkyl chain and an HLB value of 14. It was proven to augment gentamicin intestinal permeation in rats.55 Compared to labrasol, its diethyl ether fraction exhibits greater enhancement of gentamicin absorption.78

Cetomacrogol, another non-ionic surfactant, is reported to augment the absorption of gentamicin after oral administration.45,89

Fabrication of lipid-based drug delivery systems has proven to be advantageous in increasing the bioavailability of many inferiorly

Figure 2: Chemical structure of (A) amikacin, (B) streptomycin and (C) tobramycin.
absorbed compounds by encouraging lymphatic transport. Lipid-based carriers include nano/micro emulsions, SMEDDS, solid lipid nanoparticles, nanostructured lipid carriers, etc. Self nano and micro emulsifying drug delivery systems have shown promising abilities in enhancing the permeability of BCS III class drugs. Some such reported formulations include: SMEDDS containing PEG-8 caprylic/capric glycerides, gentamicin coupled SMEDDS having Softisan and Precirol as lipid matrix and self-nanoemulsifying formulations containing PEG 4000, soybean oil, Kolliphor1 EL and Kolliphor1 P188 and Transcutol1 HP. Nanoparticles are well known to augment cellular uptake of drugs besides enhancing therapeutic intensities at desired locates as well as ameliorating the pharmacodynamic and pharmacokinetic concerns. Nanomaterials offer numerous

Table 4: Aminoglycosides (other than gentamicin)- Non-Invasive formulation approaches.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Approach utilized</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>Thiolated Chitosan Nanoparticles for oral drug delivery.</td>
<td>Increases the mucoadhesive properties thereby enhancing rate of drug absorption by promoting permeation of nanoparticles via intracellular space.</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Poly D, L-Lactide-co-glycolide Nanoparticles.</td>
<td>Appreciable particle size (260.3 nm) for permeating through small intestine.</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Reverse Iontophoresis.</td>
<td>Drug could be extracted across the skin membrane at the negative electrode.</td>
<td>79</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Chitosan nanoparticles (dextran sulphate as a counterion) for oral delivery.</td>
<td>Nanoparticles were comparable to s.c. injection of free drug solution as studied in tuberculosis infected mouse model.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Poly-lactideco-glycolide nanoparticles.</td>
<td>21 times increase in relative BA of drug formulation compared with im free drug injection.</td>
<td>81</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>Chitosan nanoparticles using dextran sulphate as a counterion.</td>
<td>In tuberculosis treatment, formulations may provide promising oral drug delivery.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Using CRL-1605 copolymer, an inhibitor of P-glycoprotein for oral delivery.</td>
<td>Significant drug level increase in serum observed in comparison to free drug.</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Lipopolysachcharide for oral delivery.</td>
<td>Improvement in drug partition coefficient, indicating enhancement of permeability.</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Thiolated chitosan conjugate.</td>
<td>In comparison to buffer only, tobramycin sulphate uptake in presence of 0.5% (w/v) chitosan-NAC was improved 1.3-fold across rat small intestine and 2.7-fold across Caco-2 cell monolayer.</td>
<td>93</td>
</tr>
</tbody>
</table>

Figure 3: (A) Illustration depicting hydrophilic and hydrophobic side of bile salt molecule and (B) Chemical structure of bile salt (sodium taurocholate).
features, such as improved biocompatibility, site-specific drug transportation stimulated by environmental, pH, and thermal factors, and the capacity to pass through the blood-brain barrier.92 Chitosan tailored PLGCA (Poly Lactic Co Glycolic Acid) biodegradable nanoparticles for oral delivery of gentamicin in rabbits has shown significant potentials.37 Chitosan/fucoidan nanoparticles for gentamicin delivery via pulmonary route is also reported.85 Hydrogels are crosslinked Three-Dimensional (3D) polymer networks with high water absorption and retention capacity.94 Recent advancements include the use of crosslinked, water-swelling biomedical polymers as delivery systems for medicines, peptides, and proteins, as well as, as targeted delivery agents, or as in for making of protein or enzyme conjugates.95,96 Carboxymethyl cellulose-microcrystalline cellulose hydrogels have the suitable prospects to be utilized as a smart pH-sensitive strategy for oral delivery of gentamicin.97

Numerous investigational works have been carried out and are still being conducted to explore orally, nasally, rectally or transdermally applicable dosage forms of poorly absorbed drug moieties, employing permeation augmenters.97 Several compounds have revealed potent absorption-increasing activity. Hence, regarding permeation augmenters’ effectiveness and initial safety data, chitosan, bile salts, cyclodextrins and fatty acids are considered the primary preference for additional studies. For exploring the intestinal route, the drug delivery system must adhere to the epithelium layer of the intestinal wall, thereby paving the way through the paracellular route.98 Polyacrylates, chitosans, and their derivatives which are multifunctional polymers, function similarly, thereby boosting the permeation of hydrophilic macromolecules through the paracellular pathway; however, their viscous characteristic and slow dissolution rate make the preparation of needed delivery system challenging. An oral dosage form is commonly regarded as unparalleled by maximum consumers’ perspective as it eludes the necessity for the use of injections and could be easily self-administered or by guardians for neonates/children, lessening the requirement of a trained health worker for every dose administration.99

CONCLUSION

Nevertheless, additional investigations on oral gentamicin formulations are still required, taking into account the palatability of patients for successful intake of the drug. Nasal droppers, inhalers, and microneedle transdermal patches would also be the painless adaptable preference for GS administration. Rectal delivery is an additional needle invasion-free substitute, but owing to its high rate of cultural objection and user non-compliance, implementation of this delivery route may get stalled. While focusing on the fabrication of a novel delivery system for any drug moiety, the utility and acceptability of end users and dose administrators (including those for infants) should be scrutinized and assessed. Reformulation, broad preclinical and clinical studies and cognizance of the mechanism of permeability augmentation are needed for all innovative means investigated to establish the accurate dosing, confirm safety and evaluate the effectiveness, to hold up regulatory asents for assimilation of such formulations concepts in healthcare systems. On the contrary, this would summon an extended timeline.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

ABBREVIATIONS

BA: Bioavailability; BCS: Biopharmaceutics classification system; GS: Gentamicin sulphate; SMEDDS: Self-microemulsifying drug delivery system.

REFERENCES

Bhattacharjee, et al.: Non-invasive Delivery of Gentamicin

