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ABSTRACT
Drug repurposing is the remodeling of already existing drugs to reduce the time frame, 
costs, and efforts in developing a new novel drug. This strategy has secured significant 
momentum in the previous decade. It overcomes the snags and pitfalls in the traditional 
means of drug discovery. This core research strategy has now become the sole approach 
to containing many deadly diseases that have no cure in the present. In astound, for 
pandemics like COVID-19 that is spreading like a wildfire worldwide, large-scale research 
programs and trials have been carried out to identify and modify existing drugs to counter 
the novel virus. Thus, this technology of drug repurposing offers a new lease of life, 
and greatly promotes the progress of the medicine, health, and pharma sectors. The 
purpose of this study is to understand the current status of drug repurposing in the field 
of virology, bacteriology, mycology, and oncology for clinical translatability.
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INTRODUCTION
Drug repurposing is an emerging field in 
drug discovery that finds various therapeutic 
opportunities to administer existing medicine. 
In recent years, repurposed drugs have 
contributed to nearly 25% of  the yearly 
return for pharmaceutical production.1 
Moreover, many academic publications 
on drug repurposing mark the increasing 
interest in this discipline.2 The ancient 
practice of  drug discovery was a prolonged, 
effortful, troublesome, and costly method. 
Drug repurposing has an added benefit 
over typical drug manufacture because 
it decreases the production cost of  the 
drug. Further, toxicity testing and clinical 
trials have already been performed, which 
offer extra benefit. Drugs that have 
failed to reach the market despite being 
effective in late-stage trials can be exploited 
for effectiveness in a different disease 
conditions. Since repurposing is focused 
on prior research, new drug candidates 
could be easily subjected to clinical trials, 
speed up the certification procedure by the 

Food and Drug Administration (FDA), and 
minimize their entire processing period. 
The timeline for repurposing medicines 
is often reduced since most medicines are 
already established and have undergone 
clinical trials and analysis. Traditional drug 
development strategies usually include 
five stages: target discovery and preclinical 
stage, hit-to-lead process (to improve potency, 
selectivity, and physicochemical properties), 
Lead optimization (to synthesize lead 
compounds, new analogues with enhanced 
efficacy, limited off-target activities), candidate 
selection, clinical development (clinical trials 
and volunteer studies, registration and 
marketing (drug approval and marketing). 
Nevertheless, in drug repurposing, there are 
only four steps: identification of  compounds, 
acquisition of  compounds, development 
and registration, and marketing (Figure 1).3

According to a recent study report on 30 
pharmaceutical and biotech firms, the value 
to release a repositioned drug averages $8.4 
million, while launching a novel drug cost an 
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average of  $41.3 million.4 Despite recent advancements 
in the control of  certain pathogenic agents, most 
diseases often lack precise treatment. Therefore, there is 
a need for successful therapeutic approaches to fight the 
old, evolving, and re-emerging pathogens. Therefore, 
the repurposing of  currently used drugs for treating 
infections becomes highly relevant. In recent years, 
drug repurposing, together with novel drug validation 
methods and acceptable animal models, has dramatically 
led to discovering new drug-like molecules and drug 
targets. In this review, we will discuss the approaches 
used for drug repurposing in the field of  virology, 
bacteriology, mycology, and oncology.

DRUG REPURPOSING IN VIROLOGY
Recently, drug repurposing has been commonly used 
to treat critically re-emerging pandemic-positive viruses 
that have triggered alarming outbreaks, which require 
immediate attention and specific treatment, such as the 
Zika virus (ZIKV), Ebola virus (EBOV), SARS-CoV-2, 
Dengue Virus, HIV, and the Middle East coronavirus 
respiratory syndrome (MERS-CoV). The lists of  drugs 
with potential for repurposing as anti-viral agents are 
given in Table 1.

Zika Virus

ZIKV is an arthropod-borne virus that ignited a major 
epidemic in Latin American countries in late 2015. ZIKV 
infection is linked with neurological conditions such 
as Guillain – Barré syndrome and serious congenital 
disorders in neonates like microcephaly.29 Since the 
virus has the potential of  spreading from human to 
human, ZIKV pandemics are a significant threat to 
global public health.30 Intriguingly, no specific treatment 
or vaccine is available to date to impede ZIKV. The 
immunosuppressive medication mycophenolic acid and 
the antibiotic daptomycin were found effective among 

the known ZIKV replication inhibitors.14 Subsequently, 
anti-helminthic drug, niclosamide, and macrolide 
antibiotic, azithromycin, were identified as efficient 
ZIKV replication inhibitors in several neural cell lines 
infected by ZIKV.5,11 The computational method along 
with experimental validations, led to the identification 
of  novobiocin (another antibiotic), niclosamide, and 
ferroportin as potent inhibitors of  ZIKV targeting  
NS3/NS2B serine protease.9,12 A polyether of  bacterial 
origin, Nanchangmycin, was found to hinder ZIKV 
infection in various cell lines.6 Hippeastrine hydrobromide 
(HH), a natural alkaloid, has recently been discovered as a 
promising inhibitor of  ZIKV replication.13 The efficacy 
of  Ribavirin and Sofosbuvir (used for the treatment of  
hepatitis C) as anti-ZIKV drugs is noteworthy, although 
contrasting reports on the potency of  the latter have 
been published.10,16 Therefore, before considering it as 
an anti-ZIKV drug, a proper investigation into the safety 
of  Sofosbuvir is required. To date, many repurposed 
drugs, including anti-malarial drugs have been identified 
to be effective in controlling the virulence of  ZIKV. 
Recently, the efficacy of  hybrid compounds derived 
from anti-malarial drugs, chloroquine, and sulfadoxine 
was evaluated for ZIKV inhibitory effect, resulting in 
the development of  the new highly potent combination 
of  drug-like compounds.31 The other drugs repurposed 
against ZIKV include nitazoxanide (antiparasitic drug), 
chloroquine (anti-malarial drug], emetine (anti-protozoal 
drug), ribavirin, and favipiravir (anti-viral drugs).12,31-33 

Overall, these studies suggested that drug repurposing 
strategy can be rapidly deployed for drug discovery 
against ZIKV.

Ebola virus

EBOV is a filovirus that was first identified in 1976, 
causing two concurrent outbursts. The deadly virus 
gained considerable attention during 2014-2016 due to 
its rapid alarming outbreak all over West Africa. Despite 
the lethal conditions caused by EBOV, no specific 
therapeutics are available for its containment yet. Drug 
repurposing studies performed resulted in discovering 
a cluster of  approved drugs that offers safety against 
EBOV. These include the viral RNA polymerase 
inhibitor, Favipiravir approved against influenza A virus, 
an adenosine analogue GS-5734 effective against highly 
pathogenic coronaviruses, and Amodiaquine, an anti-
malarial drug, used widely in Africa.21,29,34-36 The potent 
anti-EBOV activity was detected for the FDA-approved 
selective estrogen receptor modulators, Cloremiphene 
and Toremiphene, anti-depressant Sertraline and 
heart drug Bepridil, antibiotic Teicoplanin, cationic 

Figure 1: Conventional drug discovery compared with drug 
repurposing approach. In drug repurposing (lower panel), the 

time needed from hit detection to lead optimization (upper 
panel) is saved.
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Table 1: Drugs with potential for repurposing as antiviral agents.
Drug Original Indication Virus Target Reference

Azithromycin Antibacterial ZIKV ND* Retallack et al. (2016)5

Nanchangmycin Insecticidal, 
antibacterial ZIKV Virus entry Rausch et al. (2017)6

Memantine Treatment of
Alzheimer’s disease

ZIKV ND Costa et al. (2017)7

SARS-CoV-2 ND Hasanagic et al. (2020)8

Novobiocin Antibacterial ZIKV NS2B/NS3 Yuan et al. (2017)9

Ribavirin Antiviral ZIKV NS5 RNA
polymerase Kamiyama et al. (2017)10

Niclosamide Antiparasitic ZIKV NS2B/NS3 Xu et al. (2016),11 Li et al. (2017)12

Hippeastrine 
hydrobromide

Antiviral (avian 
influenza H5N1) ZIKV ND Zhou et al. (2017)13

Daptomycin Antibacterial ZIKV ND Barrows et al. (2016)14

Mycophenolic acid Immunomodulator ZIKV ND Barrows et al. (2016)14

Chloroquine Antimalarial ZIKV Inhibiting endosomal disassembly 
of the internalized virus Zhang et al. (2019)15

Sofosbuvir Antiviral ZIKV NS5 RNA polymerase Bullard et al. (2017)16

Prochlorperazine Antiemetic DENV Viral entry Simanjuntak et al. (2015)17

Chlorcyclizine Antihistamine HCV Viral entry He et al. (2015)18

Manidipine Antihypertensive JEV,
ZIKV NS4B Wang et al. (2017)19

Chlorpromazine Antipsychotic SARS-CoV-2 ND Plaze et al. (2021)20

Favipiravir Antiviral EBOV RNA polymerase L Sissoko et al. (2016)21

Imatinib Anticancer SARS-CoV-2 Viral fusion Morales-Ortega et al. (2020),22 
Emadi et al. (2020)23

Nitazoxanide Antiparasitic
Influenza Maturation of

hemagglutinin McKimm-Breschkin et al. (2018)24

Rotavirus Viral
morphogenesis Mahapatro Wang et al. (2017)25

Remdesivir Hepatitis C, RSC
SARS-CoV-2 RdRp inhibitor Dehelean et al. (2020)26

EBOV RdRp inhibitor Nili et al. (2020)27

Raltegravir Antiviral Herpesvirus Terminase Yan et al. (2014)28

*ND: Not done

amphiphilic drugs like Amiodarone, and the RNA 
polymerase inhibitor BCX-4430.37-41 

Influenza Virus

The influenza virus is included in the family 
Orthomyxoviridae and is responsible for global epidemics 
of  flu disease. The antiparasitic medication nitazoxanide, 
currently used for the treatment of  influenza, is by far 
the most advanced example of  drug repurposing.42  

A triple-drug combination of  clarithromycin, naproxen, 
and oseltamivir demonstrated potency against severe 
influenza infection.11 Dinaciclib, flavopiridol, and PIK-
75 have been documented to be highly potent against 
H7N9 viruses with lower toxicity.43 Drugs such as 
dapivirine, naproxen, clarithromycin, and BAY 81-8781 
are were reported to possess anti-influenza activity.44 

The efficacy of  nalidixic acid and dorzolamide against 
oseltamivir-resistant influenza has been reported.45 In a 
recent study, antibiotic azithromycin exhibited broad-
spectrum anti-viral effects against the influenza virus and  
SARS-CoV-2.46 The combined treatment of  oseltamivir 
and anti-fungal drug itraconazole yielded stronger 
anti-viral activities in the influenza virus compared to 
monotherapy with oseltamivir.47 Amitriptyline HCl  
(an anti-depressant drug), azacitidine (an anti-neoplastic 
drug) significantly decreased the lung injury score 
and enhanced the survival of  H5N1 virus-infected 
mice.48 In a recent study, eight compounds (antimycin 
A, brequinar, 6-azauridine, azaribine, pyrazofurin, 
AVN-944, mycophenolate mofetil, and mycophenolic 
acid), previously known as an anti-viral agent against 
mammarenaviruses exhibited potent anti-influenza 
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virus activity.49 Papaverine (presently used for the 
treatment of  heart disease, impotency, and psychosis) 
and emetine (anti-protozoal drug), exhibited anti-viral 
activity against the influenza A virus.50,51 Guanethidine 
(anti-hypertensive drug), Trametinib (MEK inhibitor 
and Verdinexor (a selective inhibitor of  nuclear export, 
SINE), exhibited measurable anti-influenza activity in 
cell culture.52-54 Anti-fungal therapeutics, posaconazole, 
and itraconazole were shown to inhibit the in vitro and  
in vivo propagation of  the influenza virus.55

Dengue virus

Dengue fever is a painful, disabling mosquito-borne 
infection caused by any of  the four-antigenically distinct 
serotypes of  Dengue Virus (DENV). The repositioning 
of  drugs currently used seems to be a successful and 
alternate approach for accelerated clinical intervention, 
considering the delay in bringing new drugs in the 
market and the rapidly spreading nature of  DENV.56 
Viral protease inhibitors have been repurposed against 
Dengue virus infection, such as Nelfinavir, Lopinavir, and 
Ritonavir.57 Chloroquine, an anti-malarial medication, 
has been shown to inhibit DENV-2 replication in Vero 
cells by plaque assay and qRT-PCR at a dosage of   
5 μg/ml.58 Castanospermine, a natural alkaloid, 
was active in vitro against DENV-1, influenza virus, 
cytomegalovirus, and HIV-1.59 Antipsychotic 
agents (dasatinib, bortezomib, and prochlorperazine) 
antiparasitic agents (ivermectin, Suramin, Nitazoxanide 
A), steroid (dexamethasone, prednisolone), and antibiotics 
(geneticin, narasin, and minocycline) are potent 
against DENV.56 Sofosbuvir, a clinically approved 
anti-hepatitis C virus, blocks DENV replication.60 

Sunitinib and erlotinib, inhibitors of  cellular kinases 
AAK1 and GAK and approved anti-cancer drugs, 
possess anti-DENV activity.61 N-desmethylclozapine, 
fluoxetine hydrochloride, and salmeterol xinafoate were 
reported as DENV inhibitors by screening a library 
of  pharmacologically active compounds and approved 
drugs.62 Two analogues of  resveratrol, PNR-4-44, 
and PNR-5-02, possessed strong anti-DENV activity 
and targeted viral protein synthesis and replication.63 
Balapiravir and ribavirin, inhibitors of  viral RNA-
dependent RNA polymerase (RdRp), developed 
originally as inhibitors of  HCV, were effective against 
DENV.64 Prochlorperazine, a dopamine D2 receptor 
antagonist, approved for treating human nausea, 
vomiting, and headache, is effective against in vitro and 
in vivo DENV infection.17 Nordihydroguaiaretic acid 
(NDGA), a lipid-lowering drug with antioxidant and 
anti-inflammatory properties, inhibited DENV infection 
by targeting replication and assembly of  viral RNA.65 

Bioflavonoids, Baicalein, and quercetin exert virucidal 
activity against DENV by interfering with intracellular 
replication.66,67 The natural cinchona alkaloid, Quinine, 
inhibited DENV replication and viral protein synthesis 
of  DENV RNA in a dose-dependent manner.68 These 
studies suggest that repurposing of  existing drugs is a 
promising strategy to treat dengue infection.

Human Immunodeficiency virus

HIV, which has claimed almost 33 million lives so 
far, remains a substantial global public health issue. 
Studies have shown that Chloroquine and its analogue, 
hydroxyl Chloroquine, can inhibit HIV-1 replication.69 

Zidovudine, the first anti-HIV medication approved 
by the FDA, was created primarily as an anti-cancer 
drug in 1964, before being formulated as an anti-HIV 
product.70 This was not only the first excellent case of  
drug repositioning but also the fastest approval period 
for drugs, completed in 25 months. Therefore, drug 
repurposing strategy can be crucial for saving time and 
money associated with the production of  new drugs. 
Several anti-HIV drugs are repurposed candidates for 
other diseases. For example, cidofovir and ganciclovir 
have been generally accepted for their capacity to 
bring about apoptosis in cancer cells.71,72 Efavirenz 
has been shown to have significant anti-neoplastic 
activity against both pancreatic and anaplastic thyroid 
cancer.73 Rilpivirine, along with etravirine and efavirenz, 
was recently reported to inhibit Zika virus infection 
in the brain.74 HIV-1 protease inhibitors viz. ritonavir 
and lopinavir are known to exhibit anti-protozoal 
activity, in addition to anti-cancer activity and anti-
malarial activity.75,76 Remdesivir, another HIV-1 protease 
inhibitor, has also shown significant inhibitory potential 
against several viruses, including filoviruses such as 
Ebola.77

SARS-CoV-2

Coronaviruses (CoVs) are single-stranded RNA 
viruses that cause various diseases, such as common 
cold, respiratory and gastrointestinal infections. The 
primary challenge about CoV infections includes their 
substantial death rates, the advent of  mutated viral 
strains capable of  human-to-human transmission, and 
trouble in determining the intermediate host. SARS-
CoV-2, causing COVID-19 outbreaks originated in 
China in late 2019 and later spreads to many countries 
worldwide. In this scenario, where CoVs poses a 
significant concern to global public health, the quest 
for potent therapeutic methods has become a priority 
for global public health management. The main 
targets for drug-repurposing studies in SARS-CoV-2 
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are main protease (mPro), spike protein, and RNA-
dependent RNA polymerase (RdRp). Several drugs 
such as paritaprevir, simeprevir, Saquinavir, ritonavir, 
remdesivir, delavirdine, cefuroxime, oseltamivir, 
prevacid, Apixaban, Nelfinavir, glecaprevir, Perampanel, 
Carprofen, Celecoxib, Alprazolam, Trovafolxacin, 
Sarafloxacin, Ethyl biscoumacetate, Daunorubicin, 
ergotamine, bromocriptine, meclocycline, amrubicin, 
ergoloid, ketotifen-N-glucuronide, N-trifluoroacetyl-
adriamycin, and 5a-reductase-inhibitor were proposed as  
mPro mediated potential inhibitor of  SARS-CoV-2.78-82 
The virtual screening of  inhibitors against human 
Transmembrane serine protease 2 (TMPRSS2), which 
allow spike protein-mediated entry of  SARS-CoV-2, 
predicted benzquercin as the most potent hit.83 
Recently, several compounds, including ivermectin, 
selamectin, doramectin, theaflavin digallate, suramin 
sodium, and taraxanthin were predicted to strongly bind 
to the receptor-binding domain (RBD) of  spike protein, 
suggesting these as possible drug candidates against 
SARS-CoV-2.84 Eltrombopag, used for the treatment of  
thrombocytopenia, interacts with the S2 domain of  spike 
protein, and in vitro studies demonstrated that it could 
interfere with viral entry into host cells.85 Even though 
sofosbuvir and remdesivir are anti-virals targeting RdRp 
of  other viruses like HCV, MERS, and SARS, these 
drugs were proved ineffective against SARS-CoV-2 as 
confirmed by a recent clinical trial; at the same time, these 
drugs may shorten recovery time in patients.86,87 It was 
predicted that the antiretroviral drug, zidovudine could 
bind to the newly identified nucleocapsid N-protein.88 
While Hydroxychloroquine was found to be beneficial 
in inhibiting in vitro SARS-CoV-2 infection, the results 
of  preliminary massive-scale randomized clinical 
trials in COVID-19 failed to demonstrate any survival 
advantage of  such drug therapy.89,90 The combination 
of  lopinavir/ritonavir used for HIV treatment is a 
possible candidate for the treatment of  COVID-19.91 In 
recent months, the need to find drugs to deal with the 
COVID-19 pandemic has significantly motivated these 
kinds of  studies, even though very few studies provide 
experimental validation. It is very significant to prove 
the effectiveness of  such drugs in clinical trials as the 
world desperately hopes to discover a remedy against 
SARS-CoV-2 as early as possible.

DRUG REPURPOSING IN BACTERIOLOGY
Bacteria are incredibly successful in gaining drug 
resistance by genomic modifications such as point 
mutations and horizontal transfer of  genes from the 
environment. The repurposing of  drugs has recently 

gained interest where antimicrobial resistance poses a 
well-recognized global health threat. The list of  drugs 
with potential for repurposing as antibacterial agents is 
given in Table 2.
At least some drugs primarily intended to prevent the 
growth of  cancer also serves as antimicrobials. The 
antibacterial effect of  anti-cancer drugs, 5-fluorouracil, 
gallium (Ga) compounds, and mitomycin has also been 
reported previously.132 Floxuridine, an FDA-approved 
anti-cancer drug used in the treatment of  metastatic 
carcinoma of  the colon, inhibits the growth of  S. aureus.98 

Denileukin diftitox, an anti-neoplastic agent, currently 
used to treat T-cell cutaneous lymphoma, enhances the 
effect of  rifampin, isoniazid, and pyrazinamide against 
infection with M. tuberculosis in the mouse model.99

Alkylation could be the typical mechanism of  action 
of  anti-cancer molecules with antimicrobial activity; 
however, molecules such as tamoxifen strengthen the host 
immune system to neutralize them.133 Mitomycin, FDA 
approved anti-cancer drug, showed potent antibacterial 
activity against bacterial pathogens, Pseudomonas  
aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, 
and Escherichia coli.96,97 Moreover, mitomycin eradicates 
dormant persister cells that are intrinsically tolerant 
to regular antibiotics.134 Another alkylating agent and 
anti-cancer drug, 3-bromopyruvate, shows bactericidal 
activity against MRSA and possesses the ability to 
disrupt biofilms.135 Interestingly, it is also an inhibitor 
of  the New Delhi Metallo-β-lactamase-1 (NDM-1) and 
reduces the minimal inhibitory concentration (MIC) for 
several β-lactam antibiotics in E. coli strains expressing 
NDM-1.136 Other alkylating anti-cancer drugs such as 
mechlorethamine, chlorambucil, diaziquone, busulfan, 
thioTEPA, streptozotocin, carmustine, and lomustine 
also shows promising antibacterial activity.132 Biofilm 
inhibition and bacterial quorum sensing interfering 
activities of  Fluoropyrimidine, 5-fluorouracil (5-FU) 
have been reported previously.137

Toremifene, used to treat breast cancer, not only 
impedes the growth of  oral pathogens like S. mutans 
and P. gingivalis but also prevents biofilm formation.94 
Antifolate cancer drug methotrexate inhibited the 
growth of  S. aureus, S. arlettae and S. sciurii but only 
at higher concentrations.138,139 Another anti-estrogen, 
Tamoxifen, increases the antibacterial activity of  white 
blood cells and enhances the clearance of  MRSA.95 

Sorafenib, a multi-kinase inhibitor used against renal 
cancer and liver cancer, suppressed the growth of  
antibiotic-resistant Klebsiella pneumoniae strain, suggesting 
its therapeutic utility against bacterial infection.140 
Furthermore, one of  the optimized analogue of  
Sorafenib, PK150, destroys the persister cells, and it 
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Table 2: Drugs with potential for repurposing as antibacterial agents.
Drug Initial use Repurposed use References

Pentamidine Antiprotozoal Against carbapenemase-producing Enterobacteriaceae Cebrero et al. (2018)92

Gallium nitrate Hepatocellular 
carcinoma

Inhibits Acinetobacter baumannii growth and biofilm 
formation Chua et al. (2006)93

Toremifene Breast cancer Inhibits Streptococcus mutans and Porphyromonas 
gingivalis, biofilm inhibition Gerits et al. (2017)94

Tamoxifen Anticancer
Increases the antibacterial activity of white blood cells 
against Methicillin-resistant Staphylococcus aureus 

(MRSA)
Corriden et al. (2015)95

Mitomycin C Anticancer Antibacterial activity against Pseudomonas aeruginosa, 
Staphylococcus aureus, A. baumannii

Reich et al. (1961),96  
Cruz-Muñiz et al. (2017)97

Floxuridine Anticancer Inhibits S. aureus Yeo et al. (2018)98

Denileukin diftitox Anticancer Inhibits Mycobacterium tuberculosis Gupta et al. (2017)99

Compound TS262 Anticancer Inhibits A. baumannii Alves et al. (2020)100

Naftifine Antifungal Reduces the virulence of S. aureus Chen et al. (2016)101

Clotrimazole Antifungal Inhibits Staphylococcus pseudintermedius Frosini et al. (2017)102

Miconazole Antifungal Active against Streptococcus spp, Staphylococcus spp, 
Enterococcus spp Nenoff et al. (2017)103

Statins Antihyperlipidemic Active against several Gram-positive bacteria and 
Gram-negative bacteria Ko et al. (2017)104

Aspirin NSAID Active against several Gram-positive bacteria and 
Gram-negative bacteria

Ahmed et al. (2016),105 
Konreddy et al. (2019)106

Diflunisal NSAID Reduce S. aureus cytotoxicity Hendrix et al. (2016)107

Ibuprofen NSAID Active against S. aureus Öztürk et al. (2021)108

Celecoxib NSAID Active against S. aureus, Bacillus anthracis, Bacillus 
subtilis, and Mycobacterium smegmatis Thangamani et al. (2015)109

Mefenamic acid NSAID Synergistic activity with chloramphenicol and 
cefuroxime against MRSA Chan et al. (2017)110

Salicylamide NSAID Active against Neisseria gonorrhoeae Alhashimi et al. (2019)111

Ebselen Anti-inflammatory,  
anti-oxidant

Active against B. subtilis, B. cereus, M. tuberculosis,  
S. aureus, E. coli

Gustafsson et al. (2016),112 
Dong et al. (2019)113

Artesunate Antimalarial Active against M. tuberculosis Choi et al. (2017)114

Artemisinin Antimalarial
Active against Fusobacterium nucleatum subsp. 
polymorphum, Fusobacterium nucleatum subsp. 

animalis, and Prevotella intermedia
Kim et al. (2015)115

Niclosamide Antiparasitic Anti-virulence and anti-biofilm activity against  
P. aeruginosa Imperi et al. (2013)116

Auranofin Antiparasitic
Inhibits Enterococcus faecium, S. aureus, 

Enterococcus faecalis, Streptococcus pneumoniae, and 
Streptococcus agalactiae

Harbut et al. (2015)117

Oxyclozanide Antiparasitic Against MRSA Rajamuthiah et al. (2015)118

Nitazoxanide Antiparasitic Against M. tuberculosis de Carvalho et al. (2009)119

Rafoxanide Inhibits A. baumannii Domínguez et al. (2020)120

Zidovudine Antiviral Against carbapenem-resistant Enterobacteriaceae Doléans et al. (2011)121

Ribavirin Antiviral Reduces V. cholerae pathogenesis Mandal et al. (2016)122

DIBI Thalassemia treatment Inhibits S. aureus Parquet et al. (2018)123

Ivacaftor Cystic fibrosis Inhibits S. aureus, S. pneumoniae Reznikov et al. (2014)124

Zafirlukast Antiasthma drug Antibacterial and antibiofilm activity against  
Gram-positive pathogens Gerits et al. (2017)94

Glatiramer Acetate Multiple sclerosis Inhibits E. coli, P. aeruginosa Christiansen et al. (2017)125

Penfluridol Antipsychotic Prevent biofilm formation of E. faecalis Zeng et al. (2021)126

Ethoxzolamide Diuretic Inhibits H. pylori Rahman et al. (2020)127

ticagrelor Antiplatelet therapy Inhibits Clostridioides difficile Phanchana et al. (2020)128

Sitagliptin Diabetes mellitus type II Anti-virulence agent against S. marcescens Abbas et al. (2020)129

SCR0911 Cytochrome bc1 inhibitor Inhibits M. tuberculosis Chong et al. (2020)130

Griseofulvin Antifungal Several Gram-negative and Gram-positive bacteria Geronikaki et al. (2020)131

Salicylamide NSAID Neisseria gonorrhoeae Alhashimi et al. (2019)111
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failed to induce resistance upon continuous exposure 
of  S. aureus, indicating its therapeutic potential.141 

Diverse class of  anti-fungal drugs viz. naftifine, 
miconazole, clotrimazole, and ciclopirox displayed 
intense antimicrobial activities against Gram-positive and 
Gram-negative pathogens like Microsporum canis, Micrococcus 
luteus, Propionibacterium acnes, MRSA, Malassezia furfur, 
Chryseobacterium aquaticum, Trichophyton mentagrophytes, 
Candida albicans, Trichophyton rubrum, Epidermophyton 
floccosum, and P. aeruginosa.106,142 Clotrimazole is an FDA-
approved imidazole derivate with broad-spectrum 
anti-fungal activity, showed less MIC50 and MIC90 (0.5-
1mg/L) for methicillin-sensitive and methicilin resistant 
strains of  Staphylococcus pseudintermedius, supporting its use 
through drug repurposing.102 Miconazole, traditionally 
used for skin, nail, and vaginal infections, showed 
antimicrobial properties against Gram-positive bacteria 
Streptococcus spp., Staphylococcus spp., Enterococcus spp., and 
Corynebacterium spp., with MIC value ranging between 0.78 
and 6.25 μg/mL.103 Naftifine, another FDA-approved 
anti-fungal competitively inhibited diapophytoene 
desaturase, an enzyme involved in carotenoid pigment 
synthesis, thereby reduces the virulence of  S. aureus.102 

Therefore, naftifine can be considered as a promising 
repurposed anti-virulence drug against S. aureus.
Statins inhibit HMG-CoA reductase, involved in 
the cholesterol biosynthetic pathway. Statins viz. 
atorvastatin, fluvastatin, simvastatin, and rosuvastatin 
exhibit antimicrobial activity against Gram-positive 
bacteria (Streptococcus, Staphylococcus, and Enterococci) and 
Gram-negative bacteria (Moraxella catarrhalis, Haemophilus 
influenzae, Porphyromonas gingivalis and Aggregatibacter 
inomycetemcomitans, Enterobacter aerogenes, Citrobacter 
freundii, Enterobacter cloacae, Klebsiella pneumoniae, Proteus 
mirabilis, and E. coli).104 Simvastatin is one of  the most 
potent antimicrobial agents among statins, showing 
potent antibacterial activity against Gram-positive and 
Gram-negative pathogens and inhibited established 
staphylococcal biofilms.109

Interestingly, investigators have also explored the efficacy 
of  existing FDA-approved anti-inflammatory drugs 
against bacterial pathogens. For example, non-steroidal 
anti-inflammatory drugs (NSAIDs) such as diclofenac 
sodium, ibuprofen, indomethacin, and aspirin, exhibited 
antibacterial activity against E. coli, Coagulase-negative 
Staphylococci (CoNS), S. aureus, Klebsiella spp., Enterococcus 
faecalis, Pseudomonas aeruginosa, Streptococci spp., Proteus spp. 
and Bacillus spp.105 Diflunisal, an FDA-approved NSAID 
is reported to reduce S. aureus cytotoxicity, inhibit 
skeletal cell death, and prevent bone destruction during 
staphylococcal osteomyelitis.107 Further, it is reported 

that diflunisal inhibits the growth of  Helicobacter pylori, 
indicating its usefulness in drug repurposing.143

The organo-selenium compound ebselen is a topical 
antibacterial agent in the animal model of  MDR S. 
aureus skin infection.113 Gustafsson et al. evaluated 
the library of  ebselen analogue against B. anthracis  
M. tuberculosis, S. aureus, B. subtilis, and B. cereus and 
reported its potential activity in terms of  low MIC.112 
These reports suggest the suitability of  ebselen as a 
novel repurposed drug.
Artemisinin is a sesquiterpene lactone anti-malarial 
drug. Bacterial species like Fusobacterium nucleatum 
subsp. polymorphum, periodontopathic microorganisms 
such as Fusobacterium nucleatum subsp. animalis, and 
Prevotella intermedia were found susceptible to 
artemisinin.115 Artemisinin derivatives, artesunate, and 
dihydroartemisinin exhibited more potent antibacterial 
activity against E. coli than artemisinin.144 Moreover, 
artesunate demonstrated selective anti-Mtb activity 
relative to artemisinin, indicating its effectiveness as a 
next-generation tuberculosis medication.114

Investigators have also demonstrated the potential 
antibacterial efficacy of  antiparasitic agents like 
auranofin, niclosamide, nitazoxanide, and oxyclozanide 
against Gram-positive bacteria. Auranofin, an FDA-
approved drug for rheumatoid arthritis, exhibited 
a strong antibacterial effect against several Gram-
positive bacteria, including Enterococcus faecium, S. aureus, 
Enterococcus faecalis, Streptococcus pneumoniae, and Streptococcus 
agalactiae.117 Niclosamide is a benzamide anthelmintic 
drug used against tapeworm infestation. Imperi et al. 
(2013)116 demonstrated the anti-virulence and anti-
biofilm activity of  niclosamide in P. aeruginosa. It was 
earlier reported that nitazoxanide inhibits replicating and 
nonreplicating forms of  Mtb; however, the bactericidal 
activity could not be validated in the recently conducted 
phase II clinical trials.119,145 Oxyclozanide, a salicylanilide 
anthelmintic drug used against fascioliasis in ruminants, 
exhibited potent antibacterial activity against MRSA 
with low MIC values.118 Overall, these studies suggest 
that antiparasitic drugs can be successfully repurposed 
for antimicrobial use. Other salicylanilides, rafoxanide, 
and closantel have also shown promising antibacterial 
activity.146 Anti-helminthic drugs such as moxidectin, 
ivermectin, and selamectin displayed potency against M. 
tuberculosis and M. ulcerans.147,148

Few anti-viral drugs, viz. ribavirin and zidovudine 
have also emerged as drug repurposing candidates. 
Ribavirin, used for treating hepatitis C, RSV, and viral 
hemorrhagic fever, binds to virulence activator, AphB 
and reduced Vibrio cholerae pathogenesis in animal 
models.122 Zidovudine exhibited synergistic activity 
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with Tigecycline to treat systemic carbapenem-resistant 
enterobacteriaceae infections.121

DRUG REPURPOSING IN MYCOLOGY
Mebendazole, an anti-helminthic drug, prevented the 
growth of  the fungi Cryptococcus spp.149 Quinacrine 
exhibited synergistic action with caspofungin or 
amphotericin B and inhibited the growth of  Candida 
albicans.150 An anti-metabolite drug used for colorectal 
cancer, floxuridine demonstrated anti-fungal activity 
against Exserohilum rostratum.151 Similarly, some anti-
inflammatory and immunosuppressive drugs such 
as aspirin, ibuprofen, and tacrolimus possessed an 
anti-fungal effect against Cryptococcus neoformans, 
Cryptococcus gattii, and E. rostratum.151,152 The synergy 
and anti-fungal efficacy of  the antipsychotic drug, 
bromperidol with various azoles like posaconazole, 
voriconazole, itraconazole, and ketoconazole have been 
reported previously against C. albicans, C. glabrata, and  
Aspergillus terreus.153

DRUG REPURPOSING IN ONCOLOGY
The pharmaceutical industry is developing new cancer 
therapies, but the process of  getting these drugs into 
the market is slow and costly. The re-use of  available 
approved non-cancer medications as new anti-cancer 
therapies is a relatively untapped, affordable, and secure 
strategy. Drug repurposing has the potential to make 
clinically meaningful improvements to oncology and 
will bring significant long-term economic and social 
benefits to sustainable health care systems. The list 
of  drugs with potential for repurposing as anti-cancer 
agents are given in Table 3. 
The interferons are anti-viral agents repurposed for the 
control of  leukaemias and solid cancers. IFN-α has been 
used to treat hairy cell leukaemia, CML, and myelofibrosis 
for several years.169,170 IFNs co-formulation has also 
been suggested to improve temozolomide therapy 
by inhibiting the repair enzyme MGMT.171 Cytokines 
such as TNF48 and IL2 have also been repurposed, 
but with limited clinical success due to high toxicity.172 
Investigators have also attempted to repurpose other 
drugs such as statins, disulfiram, nelfinivir, saracatinib, 
propranolol, abivertinib, leucovorin, artemisinin, and 
mibefradil. Statins demonstrate anti-cancer properties 
by inhibiting the function of  small GTP-binding 
proteins Ras, Rho, and Rac.173 Disulfiram (DSF) was 
the first drug developed to treat alcoholism. However, 
studies suggest that DSF can be effectively repurposed 
for the treatment of  human cancers.174 Research on 
nelfinivir demonstrated that it is a valuable drug for 

cancer treatment, and the mechanism of  anti-cancer 
activity is mediated by activation of  endoplasmic 
reticulum stress-pathway and Akt inhibition pathways.175 
Saracatinib is an Src/Abl kinase inhibitor possessing an 
antitumor against gastric cancer cell lines. Cotreatment 
of  saracatinib with 5-Flurouracil resulted in enhanced 
anti-cancer activity in the mouse model, indicating its 
applicability as a repurposed drug in the future.176 Studies 
have shown the efficacy of  a non-selective beta-blocker, 
propranolol as an anti-metastatic agent, particularly 
relevant to breast cancer.177 Abivertinib, an inhibitor 
of  Bruton tyrosine kinase, has shown promising anti-
cancer effects against acute myeloid leukaemia in 
preclinical studies.144 Side effects of  methotrexate and 
other chemotherapy medications can be controlled by 
leucovorin (folinic acid), initially developed to treat 
pernicious and megaloblastic anemia. The treatment 
of  colorectal cancer using combinations of  leucovorin 
with 5-fluorouracil and either oxaliplatin or irinotecan 
is reported previously.178 Recently, dihydroartemisinin 
(DHA), a semisynthetic artemisinin derivative, has been 
reported to show anti-cancer activity against several 
cancer types, including colorectal cancer.179 Mibefradil, 
a T-type Ca2+ channel blocker, retard cell division and 
stimulate cell apoptosis in leukaemia cell lines.180 The 
anti-cancer properties of  mebendazole, a well-known 
anti-helminthic drug, have been elucidated in various 
studies.181 Rapamycin, an immunosuppressant, has also 
been proved to possess anti-leukemic effects.182 To 
conclude, the high quality of  research on repurposing 
compounds is remarkable and has helped to improve 
survival and mitigate the impact of  chemotherapy on 
cancer patients.

CHALLENGES FOR DRUG REPURPOSING
The drug repurposing approach has achieved some 
remarkable success in the past, for example, raloxifene, 
initially used for osteoporosis was subsequently approved 
by the FDA for invasive breast cancer, and Sildenafil, 
initially used for angina, was repurposed and became 
the foremost product to treat erectile dysfunction. On 
the other hand, some repurposed drugs have failed at 
the level of  phase III trials (for example, latrepirdine, 
an antihistamine repurposed for Huntington’s disease, 
failed in phase III trials). No one can deny the fact that 
the majority of  drug development projects fail during 
human clinical trials. Despite all hurdles, the search for 
the novel, effective, safe, and inexpensive drug should 
continue with the highest priority. The lack of  sufficient 
funds and interest from the pharmaceutical industry is 
another obstacle for drug repurposing research. Lastly, 
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Table 3: Drugs with potential for repurposing as anticancer agents.
Drug Initial use Repurposed use References

Indomethacin Rheumatic disease Colorectal cancer Zhang et al. (2011),154 
Zhang et al. (2020)155

Quinacrine Malaria, giardiasis, rheumatoid 
arthritis

Prostatic, and non-small cell lung 
cancer

Kanai et al. (2014)156

Curcumin Dermatological diseases Pancreatic, breast, and prostate 
cancer, multiple myeloma

Aggarwal et al. (2020),50 
Tuli et al. (2019)157

Genistein Menopause, osteoporosis, 
obesity

Prostate, ovarian, and colorectal 
cancer

Pounds et al. (2017)158

Itraconazole Antifungal agent Prostate, and lung cancer Xu et al. (2019)159

Berberine Bacterial diarrhea Breast, gastric, colorectal, and lung 
cancer

Li et al. (2014)160

Niclosamide Antihelminthic drug Colorectal, and prostate cancer Bai et al. (2011)161 

Triamterene Diuretic Acute myelocytic leukemia Kanai et al. (2014)156

Mebendazole Intestinal helminthiasis Glioblastoma multiforme Agarwal et al. (2005)162

Prazosin Hypertension Adrenal incidentalomas Srirangam et al. (2011)163

Ritonavir Human immunodeficiency virus Breast cancer, Kaposi’s sarcoma, 
ovarian cancer Zhang et al. (2018)164 

Artemisinin and related-
derivatives Malaria Brain, liver, cervical, breast, colorectal, 

and lung cancer, leukemia Verbaanderd et al. (2017)165

Chloroquine and related-
derivatives Malaria, rheumatoid arthritis Pancreatic, breast cancer, 

chondrosarcoma Elwood et al. (2018)166

Aspirin Pain, fever Gastrointestinal, and esophageal 
cancer 

Viola et al. (2018)167

Disulfiram Alcohol-aversion drug Prostate, and breast cancer, melanoma Lu et al. (2021)168

Rapamycin Immunosuppressant, anti-
restenosis agent

Rectum, breast, and prostate cancer Kanai et al. (2014)156

a range of  legal and intellectual property barriers have 
a significant effect on the future benefit expected from 
the repurposed product.

CONCLUSION
Multiple disease outbreaks already afflict the global 
health care system with a lack of  effective drugs to 
prevent transmission of  the pathogen. The drugs 
used to treat recently emerged infectious agents 
like SARS-CoV-2 are not very successful, and it is a  
formidable challenge to develop vaccines for all 
diseases. In this context, there is an immense requirement 
to repurpose the available drugs using solid shreds of  
evidence. Therefore, assessing the repurposing potency 
of  existing drugs and the synergism of  two or more 
known drugs can offer an excellent and practical 
approach for the development of  new therapeutic agents. 
The drug repositioning approach provides a substantial 
decrease in research and development costs, quick 
testing, a higher likelihood of  success in the market, and 
reduced investment risk. Due to this fact, drug scientists 
and pharmaceutical companies are immensely interested 

and benefited, allowing the implementation of  novel 
repositioning strategy methods in drug development 
programs. Besides, virtual screening, structure-based 
drug design, pharmacophore modelling, and artificial 
intelligence (AI) technology will further speed up the 
drug discovery phase. Further, the drug repositioning 
strategy has become very useful to determine the 
undefined mechanism of  drug action by exploring 
novel pathways or off-targets. Finally, drug repurposing 
strategy can be efficiently used in the discovery of  new 
drugs, and it offers immense potential.
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SUMMARY
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