Anti-Tumor Activity of Viper Snake Venom Photo-products SV_1 and SV_2 against Ehrlich Ascites Carcinoma in Mice

Shivaji P. Gawade*, Munaf A. Tamboli and Sachin S. Thorat

Department of Pharmacology, Sahyadri College of Pharmacy, Methwade, Tal. Sangola Dist. Solapur-413 307, M.S., India.

ABSTRACT

Objectives: To evaluate antitumor activity potential of viper venom photoproducts SV_1 and SV_2 against Ehrlich ascites carcinoma in mice. Materials and Methods: Viper venom photoproducts SV_1 (Vipera russelli) and SV_2 (Echis carinatus) were generated by exposure of the venoms to UV sensitized methylene blue for 15 min. and 90 min. at 37°C respectively. The Antitumor activity of SV_1 and SV_2 at two concentrations (1/10th and 1/20th dilutions) was evaluated on Ehrlich Ascites Carcinoma (EAC) inoculated to Swiss male mice. The antitumor response was measured from tumor volume (TV), packed cell volume (PCV), body weight (BW), hematological parameters (Hb, RBC, total WBC) and biochemical parameters (serum LDH, ALT, AST and hepatic tissue total protein, reduced GSH and TBAR (MDA). Half of the animals ($n=6$) were used to determine the mean survival time (MST) and the percentage increase in the life span (%ILS).

Results: The SV_1 and SV_2 decreased dose dependently TV, PCV, BW, WBC, serum levels of LDH, ALT; increased dose dependently serum AST level, hepatic total protein, reduced GSH, TBARs (MDA) and serum Hb in SV_2. The results were statistically significant. The % ILS at the 1/10th dilution of SV_1 and SV_2 was 40.27% and 29.52% respectively. Conclusion: SV_1 and SV_2 at 1/10th dose level showed significant antitumor activity based on percent increase in the survival time, reduction in the tumor volume, packed cell volume and restoration of hematological and biochemical parameters towards normal value.

Key words: Non-herbal, Vipera russelli, Echis carinatus, Methylene blue, Ehrlich Ascites Carcinoma.

INTRODUCTION

Cancer is a malignant neoplasia consisting of group of disease due to unregulated cell growth. The world wide prevalence of Cancer is about 13% with 8.2 million death and diagnosed cases of cancer 14.1 million in 2012. Presently, cancer is treated with chemotherapeutic agents, radiation therapy and surgery. Plant derived natural products such as flavonoids, steroids, alkaloids and terpenoids have been extensively investigated for the anticancer activity. However, investigation on natural non-herbal natural sources have been scanty. Since ancient times, snake venoms have been used in low concentration to treat illnesses. Snake venom is a complex mixture of substances consisting of enzymes, polypeptides, peptides and non protein constituents. Snake venom photo-products are non-lethal however biologically active components that produce wide spectrum of pharmacological activities of therapeutic significance.

Anticancer action to various venoms and venom components has been reported. Calmette and coworkers reported for the first time, an antitumor activity of snake venom on adenoma cells. Anticarcinogenic action of Naja kaouthia venom (NKV) and Vipera russelli venom (VRV) may be by inducing apoptosis as evidenced from membrane blebbing, chromatin condensation and fragmentation. A heat stable protein purified from Daboia russelli russelli venom ‘drCT-1’ [7.2kDa], 125 µg/kg/i.p./d X10d], decreased significantly EAC cell count and increased the survival time of tumor bearing...
mice (178.6%),** in comparison with untreated tumor bearing control.‡

Venom of *Echis carinatus* significantly decreased EAC cell count and increased significantly survival time of the venom treated tumor bearing mice (52.3%)* in comparison with untreated tumor bearing control.§

The photooxidised *Vipera russelli* (SV₁) and *Echis carinatus* (SV₂) venom products are promising natural nonherbal therapeutic alternatives (NNTA) under extensive preclinical evaluation for its sedative, analgesic, anti-inflammatory, coagulant and cardiac stimulant,** and antidepressant, antidegenerative properties respectively. In the present paper, viper venom photo products SV₁ and SV₂ were evaluated for the antitumor potential at 1/10th and 1/20th dilutions against Ehrlich ascites carcinoma for tumor growth response, hematological, biochemical parameters and survival studies in mice.†,‡,§,∥

MATERIALS AND METHODS

Viper snake venoms: *Vipera russelli* and *Echis carinatus* purchased from Haffkine Institute, Mumbai in lyophilised powder form.

Experimental animals: The female Swiss albino mice were purchased from SKN College of Pharmacy, Kondawa, Pune, housed and maintained under standard laboratory conditions at temp. 25° ± 2°C with dark/light cycle (14/10). Animals were allowed free access of pellet diet (Pranav Agro Industries, Sangli) and water *ad libitum*. The animal care and handling were carried out in accordance with the guidelines of CPCSEA (1314/ac/09/CPCSEA dt.21.12.2009). The experimental protocols were approved by the institutional animal ethical committee (SCOP/IAEC/020,021/11-12).

Ehrlich ascites carcinoma cell culture: Ehrlich ascites carcinoma (EAC) is a liquid form of ascites carcinoma in peritoneum of mouse. EAC *in vivo* cell culture maintained in mice was procured from Dept. of Pharmacology, HSK College of Pharmacy, Bagalkot, Karnataka. EAC cells were collected in suspension in the peritoneal cavity of mice and in 4 or 6 days after passage, the ascitic fluid is formed.∥,‡ Ascitic fluid is a gray white or occasionally light bloody viscous liquid which provide nutrition to tumor cells for tumor growth. It contains 10 million neoplastic cells in 0.1 ml.

Photochemical method: The method of photo oxidation used earlier was closely followed with modifications to suit our laboratory conditions to generate photooxidised venom products SV₁ and SV₂. The flow chart of photochemical method for SV₁ is summarized as follows

Flow chart of photochemical method

600 µg/ml (2 ml): Venom sample of *Vipera russelli*

[The venom concentration is based on the lowest concentration of venom that causes 100 % mortality in mice] + methylene blue in phosphate buffer (0.05 M, pH 6.8) (2 ml)

Exposure to UV light (UV lamp Phillips, Holland, TUV 15 W, G15J8)

Distance of 5 cm at temperature 37°C ± 1°C.

Gentle stirring (15 min.)

Addition of activated charcoal (200 µl of 1% w/v)

Stirring (5 min.)

Filteration (0.2 µ) syringe filtration unit

Absorbance measurements (280 nm on UV/VIS spectrophotometer (Shimadzu, Model no. 1601).

Safety studies in mice: The venom samples were injected intraperitoneally with decreasing concentration from 60 µg to 30 µg per 20 g of mouse. The lowest concentration producing death of all three mice is interpreted as a minimum lethal dose. The equivalent doses of snake venom photo-products SV₁ and SV₂ were injected intraperitoneally and animals were observed for mortality and behavioral symptoms for 7 days.

Viability of EAC cells

EAC cell line was maintained in our laboratory by i.p. transplantation of 0.2 ml of 2×10⁶ cells/mouse after every 10 days. Viability was determined using Trypan blue exclusion assay. The cells were stained with 0.4% trypan blue in normal saline. Percent viability was determined from the ratio of unstained cells to the total cells.√

Treatment protocol

The EAC cells were collected from the donor mice. The EAC cell count was adjusted to 2×10⁶ cells/ml using sterile isotonic saline. Swiss albino mice were grouped into four groups of twelve mice each. All groups of mice were inoculated with 0.2 ml of EAC cells intraperitoneally except normal group on day ‘0’. On first day, 5 ml/kg of 0.9% NaCl was administered orally in group I. Group II was EAC control whereas Gr III received standard 5 Fluorouracil (5 FU) intraperitoneally for 14 days. SV₁a & SV₁b (3.25 µg/20g & 1.625 µg/20g) and SV₂a & SV₂b (15µg/20g & 7.5 µg/20g) in two different concentrations were administered intraperitoneally on day 1st and day 8th in group IV (SV₁a), group V (SV₁b) and group VI (SV₂a), group VII (SV₂b) respectively. Six mice from each group were sacrificed on day 15th to study antitumor activity, hematological and hepatic...
biochemical parameters. Remaining six animals from each group were maintained on feed and water ad libitum to evaluate percent increase in life span with reference to the EAC normal group.12, 14

Antitumor activity studies

The antitumor activity of SV\textsubscript{1} and SV\textsubscript{2} was evaluated from the reduction body weight, ascites tumor volume, packed cell volume. Half of the animals were used to determine the mean survival time (MST) and percent increase in the life span (%ILS). Ascetic fluid volume was measured by collecting fluid in a graduated centrifuge tube. The packed cell volume was determined by centrifuging ascetic tumor volume at 1000 rpm for 5 minutes.

Mean survival time (MST)

Six mice from each group were observed daily for the mortality. MST is given by equation.

\[
\text{MST} = \frac{\text{Mean of survival time in days of each mice in a group}}{\text{Total number of mice in a group}}
\]

Percentage increase in the life span (% ILS)

Percentage increase in the life span is given by ratio.

\[
\% \text{ILS} = \frac{\text{Mean survival of treated group}}{\text{Mean survival of control group}} \times 100
\]

Hematological parameters

Blood samples from mice were collected in capillary from retro orbital plexus for hematological parameters such as hemoglobin, RBC and WBC count. The measurements of all hematological parameters were performed by analyser (Mode: 3C3000 Plus, Mindray).

Hepatic and Serum biochemical parameters

The mice after blood sample collection were anesthetized and operated to expose the liver. The liver was perfused with saline before excision, rinsed with ice cold saline followed by cold 0.15 M Tris HCl (pH 7.4), blotted dry and weighed. A 10% w/v homogenate was prepared in 0.15 M Tris HCl buffer. It was centrifuged at 1500 rpm for 15 minutes at 4°C. The supernatant was used for the estimation of biochemical parameters such as total protein, reduced glutathione and TBARS (MDA). Serum samples were used for the estimation of Lactate Dehydrogenase, (LDH) Aspartate Aminotransferase (AST) and Alanine Aminotransferase, (ALT) levels.

Estimation of Total protein

Protein sample was allowed to react with copper in alkaline medium. The copper treated protein reduces Folin Ciocalteau reagent to impart maximum color at pH 10. The liver homogenate was mixed with 90% alcohol in 1:10 proportion. The resulting precipitate was dissolved in 1 ml of 0.1N NaOH and used for the estimation of total protein according to the Lowry's method.15

Estimation of Serum enzymes

Lactate dehydrogenase (LDH), Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were estimated using kits of Span Diagnostics Ltd. Surat, Gujarat. The kinetic factor (K) of the reaction was calculated by using following equation.

\[
K = \frac{(1/M') \times (TV/SV') \times (1/P) \times 10^6}{1}
\]

Where TV = sample volume + working reagent volume. SV' = sample volume; M' = Molar extinction coefficient of NADH = 6.22x103 lit/mol/cm at 340 nm, P = optical path length; 106 = constant. The enzyme activity was measured in terms of IU/L = \Delta A/minute x kinetic factor.

Serum Lactate Dehydrogenase

LDH catalyse the transformation of pyruvate to lactate with simultaneous oxidation of reduced NADH to NAD+. The rate of decrease in the absorbance due to the formation of NAD is proportional to the LDH activity.

The LDH activity was measured at 340 nm and estimated using equation.

LDH activity (IU/L) = \Delta A/minute x kinetic factor (K)

where K = 16030.

Serum Aspartate Aminotransaminase

AST catalyse the transformation of l-aspartate and \(\alpha\)-ketoglutarate to oxaloacetate and l-glutamate. During further transformation of oxaloacetate to l-malate, NADH is oxidized to NAD+. The rate of oxidation of NADH to NAD+ was measured at 340 nm.

The AST activity was estimated using equation,

AST activity (IU/L) = \Delta A/minute x kinetic factor (K)

where K = 1768.

Serum Alanine Aminotransaminase

ALT catalyse the transformation of L-Alanine and (\(\alpha\)-ketoglutarate to pyruvate and l-glutamate. During further transformation of pyruvate to lactate, NADH is oxidised to NAD+. The rate of oxidation of NADH to NAD+ was measured at 340 nm.

The ALT activity was estimated using equation
ALT activity (IU/L) = \[\frac{A}{\text{minute} \times \text{kinetic factor} \ (K)} \]
where \(K = 1768 \).

Hepatic Tissue Enzymes Estimation

Estimation of reduced glutathione

Reduced glutathione, a natural water soluble scavenger, in the cytoplasm inhibits free radical mediated lipid peroxidation. The intensity of color developed was measured spectrophotometrically at 412 nm and GSH value was obtained by interpolation on graph of standard GSH versus absorbance.\(^{16,17}\)

Estimation of Lipid peroxidation

The lipid peroxidation, break down the polyunsaturated fatty acids of membrane phospholipids resulting into generation of malonaldehyde (MDA) which reacts with thiobarbituric acid, forms thiobarbituric acid reactive substances (TBARS), lipid peroxides and aldehyde. TBARS were expressed in terms of MDA. The MDA content of the test liver tissue was obtained from the standard curve of concentration of MDA versus absorbance at 532 nm.\(^{18}\)

Statistical analysis

All values were expressed as mean \(\pm \) SEM \((n = 6)\). The EAC treated group was compared to control group using student ‘t’ test. All treated groups were compared to EAC control group and analysed statistically using one way ANOVA followed by Dunnett test of multiple comparison. The values of \(p < 0.05 \) were considered to be significant.

RESULTS

Effect on Mean survival time (MST) and percent increase in life span (%ILS)

The MST was significantly prolonged in 5 FU treated EAC mice in comparison to EAC control group. The \(SV_1 \) and \(SV_2 \) prolonged MST dose dependently however, prolongation was lesser than that of 5 FU. The result of \(SV_1 \) and \(SV_2 \) on MST at two dose levels were statistically significant except for \(SV_{2B} \) and \(SV_{2B} \). Table 1 summarised the effect on MST and percent increase in the life span.

Effect on Body weight against EAC in mice

As shown in the Table 1, the body weight as a measure of tumor growth response in mice was increased significantly in EAC mice as compared to saline control mice. The body weight of 5 FU treated EAC mice were decreased significantly. The \(SV_1 \) and \(SV_2 \) decreased body weight dose dependently at two concentrations \(1/10^6 \) and \(1/20^6 \). However the effect on body weight is lesser than that of 5FU treated EAC mice. The results were statistically significant except for \(SV_{2B} \) treated EAC mice.

Effect on Tumor volume and packed cell volume against EAC in mice

As shown in the Table 1, the TV and PCV were completely abolished in 5 FU treated EAC mice. The TV and PCV was decreased dose dependently and significantly in \(SV_1 \) and \(SV_2 \) treated EAC mice at two concentrations \(1/10^6 \) and \(1/20^6 \). The effect of \(SV_1 \) and \(SV_2 \) on TV and PCV was statistically significant except for \(SV_{2B} \) treated EAC mice.

Effect of \(SV_1 \) and \(SV_2 \) on hematological parameters against EAC mice

The results of \(SV_1 \) and \(SV_2 \) on hematological parameters in comparison with 5 FU treated EAC were summarized in Table 2. The effect of \(SV_1 \) and \(SV_2 \) on WBC count was more significant as compared to the effect on Hemoglobin and RBC count. The WBC count was significantly decreased in 5FU treated EAC mice. The WBC count was decreased dose dependently by \(SV_1 \) and \(SV_2 \), however, the effect was lesser than that of 5 FU group. The results of \(SV_1 \) and \(SV_2 \) at two dose levels were statistically significant. The hemoglobin and RBC count were increased significantly in 5FU treated EAC mice. These values were increased dose dependently in \(SV_1 \) and \(SV_2 \) treated EAC mice. However the results were statistically insignificant except \(SV_{2A} \) treated EAC mice.

Effect of \(SV_1 \) and \(SV_2 \) on biochemical parameters against EAC mice

The results of \(SV_1 \) and \(SV_2 \) on biochemical parameters of serum and hepatic tissue levels in comparison with 5 FU treated EAC mice were summarized in Table 3. The serum LDH, AST, hepatic tissue total protein and TBARS levels were decreased significantly in 5 FU treated EAC mice. The effect of \(SV_1 \) and \(SV_2 \) treated EAC mice on LDH, AST, total protein and TBARS was decreased dose dependently however the effect was lesser than that of 5 FU but statistically significant except for \(SV_{2B} \) on AST, total protein and TBARS levels. The serum ALT and hepatic reduced GSH levels were elevated significantly in 5FU treated mice in comparison with EAC control mice. The serum ALT and hepatic reduced GSH values were dose dependently increased in \(SV_1 \) and \(SV_2 \) treated EAC mice. The effect
DISCUSSION

In the present paper antitumor activity of two viper venom photoproducts SV_1 and SV_2 was evaluated comparatively with reference to the standard antineoplastic drug 5-Fluorouracil against EAC bearing mice. The photo-products SV_1 and SV_2 were generated by exposure of viper venoms, *Vipera russelli* and *Echis carinatus* to UV radiation in the presence of methylene blue. The original effective concentration of photoproducts SV_1 and SV_2, diluted to 1/10th and 1/20th were used to evaluate its antitumor potential.

Rapid increase in ascetic fluid with tumor growth would be the means to meet the nutritional requirement of tumor cells. Prolongation of the life span at 1/10th dilution of SV_1 and SV_2 may be by decreasing the nutritional fluid volume and the tumor growth thereby increasing the life span of EAC bearing mice. The %ILS at 1/10th dilution of SV_1 especially showed higher antitumor activity than that of SV_2 against EAC bearing mice. The antitumor potential of SV_1 and SV_2 was evident from the significant prolongation of the survival time, significant reduction in TV and PCV against EAC bearing mice.

The decrease in Hemoglobin and RBC count in EAC bearing mice may be due to iron deficiency, hemolytic or myelopathic conditions. The effect of SV_2 treated EAC bearing mice on hemoglobin level was statistically significant. The concentration dependent ameliorating effect of SV_1 was higher than that of SV_2 at two dose levels on WBC count and suggestive of cell protective action by restoring the leucocytes count towards normal value.

The serum AST level was significantly increased whereas serum ALT level was significantly decreased in EAC bearing mice in comparison to saline control.
The reduction in serum ALT level in tumor bearing mice could be due to reduced transamination of alanine to pyruvate which may be due to inhibition of gluconeogenesis in liver and kidney of tumor bearing mice, increased utilization of hepatic and free amino acids alanine and leucine for the production of hepatic and tumor cell protein. The accelerated gluconeogenesis in tumor bearing mice may be due to significant decrease in the total tissue protein, significant increase in BUN, AST and LDH. The serum LDH initiates tumor formation and it’s metabolism. In SV₁ and SV₂ treated EAC bearing mice, significant concentration dependent decrease of LDH levels were observed. However it was lesser than that of 5 FU treated EAC bearing mice. The reduced GSH is a vital antioxidant, inhibits the process of tumor formation. The reduced GSH level was increased significantly towards normal value in SV₁A and SV₂A treated EAC bearing mice. The MDA is a free oxygen radical intermediate generated during oxidative degradation of cancerous tissue as a terminal metabolic product of lipid peroxidation. The reduction in MDA level decreased cellular damage by limiting the free radical production in tumor bearing mice.

The SV₁ and SV₂ possess multiple target sites of therapeutic significance. For the first time, experiments were conducted by diluting the photoproducts to 1/10th and 1/20th of original effective concentration of venom photo-products. To summarise, SV₁ and SV₂ at 1/10th dose level revealed significant antitumor activity based on, the prolongation of percent survival time, reduction in the tumor volume ,packed cell volume and restoration of hematological and biochemical parameters towards normal value. Further studies by increasing the concentration range of SV₁ and SV₂ will substantiate significance of these NNTAs as a promising multitarget IND in the neoplastic diseases not responding to the conventional therapies.

ACKNOWLEDGEMENTS
Authors wish to acknowledge Principal, HSK College of Pharmacy, Bagalkot, for providing in vivo EAC cell culture. The present paper is a part of dissertation research of Mr M A. Tamboli and Mr S.S.Thorat for

Table 3 : Effect on SV₁ and SV₂ on biochemical parameters against EAC cells in mice

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Parameters</th>
<th>Normal 0.9% NaCl</th>
<th>EAC control</th>
<th>Standard 5 FU</th>
<th>SV₁A</th>
<th>SV₁B</th>
<th>SV₂A</th>
<th>SV₂B</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>AST (IU/L)</td>
<td>169 ± 3.49</td>
<td>320.2 ± 10.18</td>
<td>206.4 ± 4.48</td>
<td>246.1 ± 2.32</td>
<td>279.4 ± 2.42</td>
<td>263.8 ± 3.06</td>
<td>297.9 ± 9.58</td>
</tr>
<tr>
<td></td>
<td>% decrease</td>
<td></td>
<td>100</td>
<td>35.54</td>
<td>23.14</td>
<td>12.74</td>
<td>17.61</td>
<td>6.96</td>
</tr>
<tr>
<td>02</td>
<td>ALT (IU/L)</td>
<td>47.98 ± 1.07</td>
<td>29.92 ± 0.73</td>
<td>39.7 ± 0.73</td>
<td>36.45 ± 0.46</td>
<td>34.98 ± 0.47</td>
<td>34.97 ± 0.34</td>
<td>33.08 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>% increase</td>
<td></td>
<td>100</td>
<td>32.69</td>
<td>21.82</td>
<td>16.91</td>
<td>18.88</td>
<td>10.56</td>
</tr>
<tr>
<td>03</td>
<td>LDH (IU/L)</td>
<td>1668 ± 58.24</td>
<td>5777 ± 43.64</td>
<td>2898 ± 67.71</td>
<td>3971 ± 60.10</td>
<td>4879 ± 60.34</td>
<td>4514 ± 34.34</td>
<td>5022 ± 72.63</td>
</tr>
<tr>
<td></td>
<td>% decrease</td>
<td></td>
<td>100</td>
<td>49.84</td>
<td>31.26</td>
<td>15.54</td>
<td>21.86</td>
<td>13.07</td>
</tr>
<tr>
<td>04</td>
<td>Total Protein (mg/ml)</td>
<td>1.01 ± 0.01</td>
<td>1.21 ± 0.01</td>
<td>0.99 ± 0.01</td>
<td>1.00 ± 0.02</td>
<td>1.15 ± 0.03</td>
<td>1.12 ± 0.03</td>
<td>1.18 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>% increase</td>
<td></td>
<td>100</td>
<td>20.16</td>
<td>19.35</td>
<td>7.26</td>
<td>9.68</td>
<td>4.84</td>
</tr>
<tr>
<td>05</td>
<td>Reduced GSH (µg/mg tissue protein)</td>
<td>164.2 ± 3.79</td>
<td>64.07 ± 3.64</td>
<td>151.3 ± 5.40</td>
<td>120.6 ± 5.24</td>
<td>77.83 ± 3.09</td>
<td>88.99 ± 4.44</td>
<td>68.33 ± 2.83</td>
</tr>
<tr>
<td></td>
<td>% increase</td>
<td></td>
<td>100</td>
<td>136.2</td>
<td>88.23</td>
<td>21.48</td>
<td>38.90</td>
<td>6.65</td>
</tr>
<tr>
<td>06</td>
<td>TBRS (nM of MDA / mg of tissue protein)</td>
<td>11.87 ± 0.73</td>
<td>22.65 ± 0.50</td>
<td>12.24 ± 0.78</td>
<td>15 ± 1.19</td>
<td>17.8 ± 0.66</td>
<td>16.81 ± 0.51</td>
<td>20.42 ± 0.65</td>
</tr>
<tr>
<td></td>
<td>% decrease</td>
<td></td>
<td>100</td>
<td>45.96</td>
<td>33.77</td>
<td>21.23</td>
<td>25.78</td>
<td>9.85</td>
</tr>
</tbody>
</table>

Values are expressed as Mean ± SEM (n=6), and in terms of % decrease and % increase with reference to (+) control of EAC.
EAC group is compared to normal group using student ‘t’ test ;
Treatment groups (Std and Test groups) are compared with EAC control group using one way ANOVA ,post hoc Dunnett test [*p<0.05,**p<0.01,***p<0.001].
CONFLICT OF INTEREST
The authors declare no conflict of Interest.

ABBREVIATION USED
EAC, TV, PCV, BW, LDH, ALT, AST, MST, NKV, VRV, NNTA, 5 FU, (%ILS), BUN (blood urea nitrogen).

REFERENCES