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ABSTRACT
Background: Type-2 diabetes mellitus can be effectively treated with dipeptidyl peptidase-
IV inhibitors. Diverse classes of molecules have exhibited promising DPP-IV inhibition. 
Objective: In this perspective, 3D-QSAR and pharmacophore studies on a series of 
substituted pyridopyrimidinedione derivatives were performed to explore the structural 
requirements for effective DPP-IV inhibitory activity. Methods: 3D-QSAR was performed 
on 3D-QSAR module of Vlife molecular design suite (MDS) while two strategies were 
used for pharmacophore identification: MolSign module of MDS and Pharmagist. Results: 
The most significant 3D-QSAR models obtained from kNN and PLSR exhibited 79% and 
77% of internal and 66% and 67% of external predictability respectively. The results 
from both kNN and PLSR models suggest the contribution of electronegative group with 
optimum bulk to be favourable for biological activity. Additional information about field 
point S_376 suggests a more bulky group to be favourable around S_376 at R1. The 
results from pharmacophore studies by both the strategies indicate the contribution of 
three hydrogen bond acceptors, one hydrogen bond donor and one aromatic feature 
for biological activity. Conclusion: Findings of the present study can be utilized for 
development of new lead compounds exhibiting promising DPP-IV inhibitory activity. 
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INTRODUCTION

Dipeptidyl peptidase-IV (DPP-IV, CD26, 
EC 3.4.14.5) is one of  the validated targets 
for drugs deployed in the management of  
type-2 diabetes mellitus (T2DM). Since the 
last decade with the launch of  sitagliptin,1 
the DPP-IV inhibitors have been used as an 
alternative as well as in combination with  
other existing drugs for effective blood  
glucose control.2 DPP-IV finds its major role  
in inactivation of  the incretin hormones 
glucagon like peptide-1 (GLP-1) and glucose  
inhibitory peptide (GIP) involved in initiation 
of  the insulin secretion cascade following a  
meal. The enzyme is a serine protease which 
truncates GLP-1 resulting in infinitesimal 
half-life of  the hormones. Thus, inhibition 
of  DPP-IV results in an increase in half-life  
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augmentation of  insulin secretion.3,4

DPP-IV inhibitors belong to an assortment 
of  chemical classes. These can be classified 
in different ways, e.g. natural and synthetic  
or peptidomimetics and non peptidomimetics.  
Peptidomimetics mimic the penultimate 
dipeptide structure of  DPP-IV substrate 
and can again be sub-classified as glycine or 
β-alanine derivatives. Non peptidomimetic 
inhibitors do not follow dipeptide structure 
of  DPP-4 substrate and were developed 
through high-throughput screening (HTS).5 
The marketed DPP-IV inhibitors belong to  
both peptidomimetic (vildagliptin and 
saxagliptin) and non-peptidomimetic 
classes (sitagliptin, alogliptin and lina-
gliptin).6 Pyridopyrimidinediones have 
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been investigated for various biological activi-
ties such as anticancer, phospodiesterase-4 inhibi-
tory and herbicidal activities.7-9 Lam et al. reported  
pyridopyrimidinedione derivatives as potent and selec-
tive non-covalent inhibitors of  DPP-IV.10

Quantitative structure activity relationship (QSAR) 
study has established itself  as one of  the imperative  
ligand based drug design methods. It is a rational 
approach of  finding relationship between biological 
activities of  compounds and numerical representations 
of  molecular properties (descriptors). Depending upon 
the descriptor type (physicochemical, structural and 
conformational properties) QSAR can be classified as 
one dimensional (1D), 2D, 3D, 4D, 5D and 6D. Among 
these 2D and 3D QSAR studies are more frequent. 
Whereas the 2D QSAR involves descriptors correlating 
activity with structural patterns like connectivity indices, 
2D-pharmacophores etc., without taking into account 
the 3D-representation of  these properties; 3D QSAR  
involves descriptors correlating activity with non-cova-
lent interaction fields surrounding the molecules.11 A 
pharmacophore is the special arrangement of  features 
that enables a molecule to interact with a target receptor  
in a specific binding mode. Once identified, a pharmaco-
phore can serve as a powerful model in versatile applica-
tions for rational drug design such as virtual screening, 
de novo design, lead optimization and ADMET studies.12 
The present investigation encompasses 3D QSAR and 
pharmacophore study of  some pyridopyrimidinedione  
derivatives in an attempt to determine the structural  
features for improved DPP-IV inhibition.

MATERIALS AND METHODS
QSAR analysis was performed by k-nearest neighbour 
molecular field analysis (kNN-MFA) and partial least 
squares regression (PLSR) employed in Vlife molecular 
design suite (Vlife MDS) on HCL computer with Intel  
Pentium Dual Core processor and a Windows XP oper-
ating system.13,14 A data set of  20 pyridopyrimidinedione 
derivatives with DPP-IV inhibitory activity spanning  
three log values was chosen from the work of  Lam  
et al.10 The IC50 values were converted to the negative 
logarithmic scale [pIC50 (moles)] (Table 1). 

Molecular modelling
Compound structures were drawn using the 2D draw 
application of  MDS and converted to 3D. Optimization 
of  molecular structures was performed by molecular 
mechanics using Merck molecular force field (MMFF),15 
setting electrostatic and steric energies to default values 
of  30.0 and 10.0 Kcal/ mole as cut off. These energy 

minimized structures were aligned using template based 
alignment (Figure 1) and electrostatic, steric and hydro-
phobic fields were calculated on a rectangular grid  
surrounding the molecules using a sp3 hybridized carbon 
atom as a probe. 

Creation of training and test sets
In order to perceive the ability of  the model to predict 
the activity of  compounds not included in its develop-
ment (external validation), the data set was divided into 
training and test sets. Random selection method was 
used for division of  the data set into training set (80%) 
and test set (20%).

Model validation
The generated QSAR models were subjected to internal 
and external validation to adjudge their goodness-of-fit 
and predictivity respectively. Some examples for inter-
nal validation are leave-one-out (LOO) cross validation 
(q2), leave-many-out (LMO) cross validation (LMO-q2), 
bootstrapping (Boot-q2),16 True q2 and the rm

2 metric for 
internal validation etc.,17,18 while for external validation 
predicted r2 (or q2

(F1)), q
2
(F2),

19 q2
(F3),

20 Golbraikh and Trop-
sha’s criteria,21 r2

m (test)
 and concordance correlation coef-

ficient (CCC) etc. can be used.22

The internal validation of  QSAR models was performed 
by calculation of  leave-one-out (LOO) cross validation 
(q2) by equation 1.

	 � (1)

Where yi and  are the actual and predicted activities 
of  the ith compound, respectively, and  is the average 
activity of  all compounds in the training set.
While performing external validation, the predictivity 
of  a model can be judged by the value of  pred_r2 which  
reflects the degree of  correlation of  observed and  
predicted activities. Different formulae for calculation 
of  pred_r2 have been suggested by various research 
groups. Among these the most widely used formula is 
given in equation 2.

	 � (2)

The robustness of  the models was confirmed by  
Y-randomization. For this purpose response variables in 
the data set were scrambled and random models were 
generated with this data. Z score and probability (α) of  
significance of  randomization were calculated to ascer-
tain that there is no chance correlation. Z score repre-
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sents the distance between a parameter calculated from  
a model and the mean score of  that parameter from all  
the randomized models in units of  standard deviation.  
Z score value was calculated by the following formula:

		  � (3)

Where h is the q2 value calculated for the actual dataset, 
µ and σ are the average q2 and the standard deviation of  
random models respectively. The values for Z score r2 
and Z score pred_r2 can also be calculated accordingly. 
The probability (α) of  significance of  randomization 
test can be derived by comparing Z score with Z score 
critical value as reported in reference tables if  Z score 
value is less than 4.0; otherwise it can be calculated by 
the following formula (equation 4).23

	 � (4)

Pharmacophore studies
Two strategies were applied for pharmacophore studies.  
In the first strategy, MolSign module of  VLife MDS 
was used for the identification, generation and analysis  
of  pharmacophores by alignment of  the molecules on 
the basis of  their 3D pharmacophore features. Different  
combinations of  the pharmacophore features, tolerance 
limit and maximum distance were used. In the second 
strategy, the pharmacophoric features were generated 
with the aid of  a web based freely available pharma-
cophore identification server Pharmagist. The data was 
uploaded in the form of  a zip file to the server and all 
the settings were kept as default. In Pharmagist, the  
pharmacophore is constructed using six different features 
(H-bond acceptor, H-bond donors, aromatic centers,  
hydrophobic centers, negative charge and positive charge).

RESULTS AND DISCUSSION
DPP-IV inhibition is amongst the validated strategies 
for rational drug design in management of  T2DM. 
Some pyridopyrimidinedione derivatives have been found  
to possess appreciable DPP-IV inhibitory activity. The 
present study is an attempt to establish 3D QSAR 
between structural features of  such compounds and 
DPP-IV inhibition. The variables for QSAR model 
generation were selected by stepwise forward backward  
method. The statistical parameters of  two most signi
ficant models developed by kNN and PLSR methods  
respectively suggest their internal and external predictive  
ability (Table 2). The developed models were also verified  
for their robustness via Y randomization. The values of  

Z score and α for r2, q2 and pred_r2 suggest that the 
models are robust and not obtained by chance correlation.

Model 1
k Nearest Neighbor= 2, Ntraining = 16 , Ntest = 4, Degree 
of  freedom = 19, q2 = 0.7850, q2_se = 0.4354, Pred_r2 
= 0.6650, pred_r2se = 0.3361
This model was developed using stepwise forward back-
ward variable selection and has ~79% of  internal and 67%  
external predictivity. It depicts the influence of  electro-
static field at E_312 and streric field at S_515 (Figure 2).  
The negative range of  E_312 evinces the favourable 
effect of  electronegative groups towards the biologi-
cal activity while the negative range of  S_515 expresses 
that the substituent with lower steric bulk has favour-
able effect on the biological activity and vice-versa. The 
low values of  standard errors in internal (q2) and exter-
nal (pred_r2) validation also suggest that the model has 
good predictive power. The graph for observed vs. pre-
dicted activity and their comparison are given in Figure 
3.

Model 2
pIC50 = -63.9497-356.038S_157 + 20.5126S_376 + 
3.19266E_866
Ntraining =16, Ntest = 4, r2= 0.8455, q2= 0.7716, q2_se 
=0.4507, Pred_r2= 0.6716, Pred_r2se = 0.4524

Figure 1: Alignment of all the molecules on the common 
template
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Figure 2: Contribution 3D-plot for Model-1 (Developed by kNN)

Figure 5: (a) Graph of observed vs. predicted activities for 
Model-2 (b) Comparison of actual and predicted activities 

for all the compounds for the same model (blue line: actual 
activity, red line: predicted activity).

Figure 6: (a) Alignment of All the Molecules on the Common 
Pharmacophoric Features (b) The Most Active Molecule 

Aligned on the Pharmacophore.
Figure 4: Contribution 3D-plot for Model-2 (Developed by 

PLSR).

Figure 3: (a) Graph of observed vs. predicted activities for 
Model-1 (b) Comparison of actual and predicted activities 

for all the compounds for the same model (blue line: actual 
activity, red line: predicted activity).

The test set for this model was selected by stepwise 
forward backward variable selection. This model’s inter-
nal prognostic ability is ~ 77% and external predictivity  
is ~67%. It entails a negative contribution of  S_157  
towards favourable biological activity while owing to 
their positive coefficients conduciveness of  a more 
bulky group around S_376 and a more electronegative 
group around E_866 (Figure 4). The Z-values for r2, q2 
and pred_r2 (3.78596, 2.41878 and 0.74517 respectively)  
show that the model is robust and not obtained by 

chance. The corresponding  values suggested a confi-
dence interval of  >99%. The graph for observed vs. 
predicted activity and their comparison for model 2 are 
given in Figure 5.

Interpretation of pharmacophore identification:

Based on the alignment of  molecules presented in Table 1,  
different chemical feature based pharmacophore models  
were constructed with MolSign and Pharmagist.  
Different biophores were developed using various  
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Table 1: The Dataset Used for Development of QSAR 

Comp. No. Substitution 
(R/R1)

IC50
(nm)

Actual 
pIC50

Model -1 Model -2
Predicted 

pIC50
Residual Predicted 

pIC50
Residual

3a H 257 6.59 6.73 -0.14 6.71 -0.12

3b 4-F 1070 5.97 6.21 -0.24 6.73 -0.76

3c 4-Br 128 6.89 6.59 0.30 6.69 0.20

3d 3-OMe 2800 5.55 6.40 -0.85 5.16 0.39

3e 2-OMe 57 7.24 7.66 -0.42 7.54 -0.30

3f 2-CN 69 7.16 6.77* 0.39 7.40 -0.24

3g 2-Cl 33 7.48 7.50* -0.02 7.48 0.00

3h 2-Br 17 7.77 7.39 0.38 7.44 * 0.33

3i 2,3-di-Cl 371 6.43 7.50 -1.07 6.55 -0.12

3j 2,4-di-Cl 24 7.62 7.51* 0.11 7.51 0.11

3k 2,5-di-Cl 29 7.54 7.51 0.03 7.43 * 0.11

3l 2-OMe, 5-F 20 7.70 7.57 0.13 7.57 0.13

3m 2-Cl, 5-F 7.6 8.12 8.04 0.08 7.50 0.62

3n 2-Br, 5-F 4.8 8.32 7.90* 0.42 7.45 * 0.87

10a OH 260 6.59 6.74 -0.15 6.89 -0.30

10b NHMe 2.8 8.55 8.35 0.20 8.03 0.52

10c NHEt 6.9 8.16 8.55 -0.39 8.26 * -0.10

10d N(Et)2 2.8 8.55 8.35 0.20 8.59 -0.04

10e morpholine 4.6 8.34 8.28 0.06 8.07 0.27

10f 1-Me-piperazine 9.9 8.00 8.44 -0.44 8.36 -0.36

* Test set molecules

combinations of  features and tolerance limits. Both 
the pharmacophore identification strategies present 
three hydrogen bond acceptors, one hydrogen bond 
donor and one aromatic feature as common pharma-
cophoric features. The orange sphere in MolSign result 
represents aromatic, buff  spheres represent hydrogen  
bond acceptors and magenta sphere represents hydrogen  

bond donor feature (Figure 6). In Pharmagist, green 
spheres represent hydrogen bond acceptors, sky-blue 
spheres represent aromatic and gray spheres represent 
hydrophobic features (Figure 7). The Pharmacophore 
Features of  the Biophores for Different Combinations 
Using Both Molsign and Pharmagist are given in Table 3.
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Figure 7: (a) Alignment of All the Molecules on Common 
Pharmacophore Features in Pharmagist (b) Position of the 
Pharmacophore Features on the Most Active Molecule (c) 
Distance Constraints Between Common Features of the 

Pharmacophore (Color Scheme: Sky blue-Aromatic, Green- 
Hydrogen Bond Acceptor, Yellow-Hydrogen Bond Donor)

Table 2: Statistical Parameters for the Most Signifi-
cant Models

Parameters kNN-MFA PLSR
Training set 

size (n) 16 16

Test set size 4 4

K nearest 
neighbour/ 
Optimum 

components 
(PLSR)

2 1

Degree of 
freedom 19 14

r2# - 0.8455

q2 0.7850 0.7716

F-test# - 76.6377

r2_se# - 0.3706

q2_se 0.4354 0.4507

Pred_r2 0.6650 0.6716

Pred_ r2se 0.3361 0.4524

Z-score#

-
r2

q2

Pred_r2

3.78596
2.41878
0.74517

Descriptors 
range/

contribution
E_312
S_515

(-0.3169  
-0.3157)
(-0.2244  
-0.1875)

S_157
S_376
E_866

50.87%
12.66%
15.48%

# Calculated only for PLSR model

Table 3: Pharmacophore Features of the Biophores for Different Combinations Using Both Molsign and Phar-
magist

Combination 
(Molsign)#

Primary 
pharmacophore 
feature count#

Tolerance 
(%)#

Maximum 
distance 

allowed (Ǻ)#

Total 
Number of 
biophores 
generated

Biophore 
with better 

RMSD/ 
score

Features
RMSD(Mol-
sign)/Score 

(Pharmagist)

Molsign

A 3 20 10 332 Bio-phore-2 HAc, HAc, PosC, 
HAc, HDr 0.054312

B 5 20 10 225 Bio-phore-1 HDr, HAc, HAc, 
HAc, PosC, AroC 0.097592

Pharmagist

- - - - 1 1

Aromatic (3), 
Hydrophobic 

(2), Donor (1), 
Acceptors (4)

75.71

(The values in parentheses indicate the percentage of molecules aligned on the common pharmacophore features)
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CONCLUSION
Combating the prevailing diseases such as T2DM calls 
for efforts from all over the world to bring forth newer 
scaffolds targeting different receptors. These scaffolds 
can further be optimized for improved efficacy. To this  
end some pyridopyrimidine derivatives were investigated  
through ligand based drug design for improvement in 
their DPP-IV inhibitory potential. The results from 
kNN and PLSR models suggest the contribution of  
electronegative groups with optimum bulk to be favour-
able for biological activity. Additional information about 
field point S_376 anticipates a more bulky group at R1. 
Pharmacophore studies from both strategies envisage 
the contribution of  three hydrogen bond acceptors, 
one hydrogen bond donor and one aromatic feature 
for biological activity. The findings of  this study can be 
explored for improved DPP-IV inhibitors and further 
efforts in this direction are in progress.
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ABBREVIATION USED
ADMET: Absorption, distribution, metabolism, excre-
tion and toxicity; CCC: Concordance correlation coeffi-
cient; DPP-IV: Dipeptidyl peptidase-IV; GIP: Glucose 
inhibitory peptide; GLP: Glucagon like peptide; HTS: 
High throughput screening; kNN-MFA: k-nearest 
neighbour molecular field analysis; LMO: Leave many 
out; LOO: Leave one out; MDS: Molecular design 
suite; PLSR: Partial least square regression; QSAR: 
Quantitative structure activity relationship; T2DM: 
Type-2 diabetes mellitus.
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SUMMARY
1.	 3D-QSAR and pharmacophore studies were performed on a series of 

pyridopyrimidindione derivatives.
2.	 The result of QSAR analysis shows contribution of electronegative groups 

and optimum bulk for favourable DPP-IV inhibitory activity.
3.	 Pharmacophore study envisages the contribution of three H-bond 

acceptors, one H-bond donor and one aromatic feature for favourable 
activity.

4.	 The findings of this study can be explored for improved DPP-IV inhibitory 
activity.
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