Home | Articles
Published on:September 2023
Indian Journal of Pharmaceutical Education and Research, 2023; 57(4):1002-1011.
Original Article | doi:10.5530/ijper.57.4.122

Ameliorating the Poor Dissolution Rate of Selexipag in Aqueous Acidic Conditions Following Confinement into Mesoporous Silica


Authors and affiliation (s):

Mohamed S. Attia*, Fakhr-Eldin S. Ghazy

Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, EGYPT.

Abstract:

Background: Pulmonary Arterial Hypertension (PAH) is a serious condition with available treatment options, including Selexipag (SXP), a selective prostacyclin receptor agonist that has effectively reduced patient morbidity and mortality. SXP is limited by poor water solubility, especially in acidic solutions, which can affect its bioavailability and therapeutic efficacy. Therefore, strategies to tackle the solubility of SXP, such as nano-based Drug Delivery Systems (DDSs), should be explored. Objectives: The study aimed to tackle the poor dissolution rate of SXP and, consequently, improving the clinical efficacy and treatment outcomes of PAH patients. Materials and Methods: Three forms of Mesoporous Silica Nanoparticles (MSNs) were investigated as a DDS. SXP was loaded to MSNs (SBA-15, MCM-41, and KIT-6) via rotary evaporation technique and characterized for in vitro dissolution rates, drug release kinetics, morphology, crystallinity, interaction and surface properties. Results and Conclusion: Incorporating SXP as a monolayer to SBA-15 formulations significantly improved its dissolution rate, achieving an enhancement ratio of 9.48 at pH 1.2 compared to the pure drug. Notably, the monolayer and double-layer-loaded SBA-15 formulations exhibited the highest dissolution efficiency percentages, with values of 72.85% and 69.01%, respectively, surpassing that of raw SXP. The entrapment of SXP within SBA-15 mesopores was evident from pore volume reduction. The enhancement in dissolution rates was ascribed to the conversion of SXP into an amorphous state upon confinement within the nanostructure, which was indicated through X-ray diffraction and scanning electron microscopy analyses.

Keywords: Mesoporous silica, Drug dissolution, Selexipag, Solubility, Pulmonary arterial hypertension, Crystallinity.

 




 

Impact Factor

IJPER - An Official Publication of Association of Pharmaceutical Teachers of India is pleased to announce continued growth in the Latest Release of Journal Citation Reports (source: Web of Science Data).

 

Impact Factor® as reported in the 2023 Journal Citation Reports® (Clarivate Analytics, 2023): 0.8

The Official Journal of Association of Pharmaceutical Teachers of India (APTI)
(Registered under Registration of Societies Act XXI of 1860 No. 122 of 1966-1967, Lucknow)

Indian Journal of Pharmaceutical Education and Research (IJPER) [ISSN-0019-5464] is the official journal of Association of Pharmaceutical Teachers of India (APTI) and is being published since 1967.

DOI HISTORY

IJPER uses reference linking service using Digital Object Identifiers (DOI) by Crossref. Articles from the year 2013 are being assigned DOIs for its permanent URLs