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ABSTRACT
Introduction: The major aim of drug design and discovery is to minimize the time and 
cost of drug discovery process. Various molecules which are promised to be potential 
candidate during computational and preclinical studies, shows the poor results during 
clinical trials due to less credibility of in silico results. This leads to increased burden of 
time and cost of drug discovery process. Methodology: A reliabel Shape and Electrostatic 
similarity based screening of ligands and assessment of druggability of the target protein 
provides a means to predict the negatives at an earlier stage of drug discovery pipeline. 
Two compounds (BNUA-3 & BNUB-13) reported from our lab were compared with ANF 
and TMS. Results and Discussion: Shape coefficient between BNUB-13 and TMS was 
0.79 and electrostatic coefficient was 0.464 indicating that BNUB-13 is quite similar to 
TMS. Dscore values for ANF, TMS, BNUB-13 and BNAU-3 were also found to be similar, 
1.404, 1.390, 1.389 and 1.366, respectively. Conclusion: The comparative studies of 
two highly potent CYP1B1 inhibitors revealed minimum structural information that can 
modulate the potency of the inhibitors. Meanwhile assessment of the active site of 
CYP1B1 has shown that CYP1B1 is a druggable target.
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INTRODUCTION
Cytochrome P450 (CYP) enzymes are present  
in various organs of  the human body 
that comprises a Formatting: leave a space 
here large family of  detoxification enzymes.  
The cytochrome P450 1B1 isoform (CYP1B1)  
is a heme-thiolate monooxygenase which 
causes the hydroxylation of  steroids, estrogens  
and fatty acids. Unlike other CYPs, CYP1B1 
is not present in normal healthy tissues but 
significantly expressed in cancerous cells of  
hormonal cancers including that of  the ovary, 
prostate, uterus, mammary, pituitary, regard-
less of  the cancer’s genetic origin. Recent 
studies revealed  that CYP1B1 plays a major    
role   in the  genesis  of  hormone-mediated 
prostate and breast cancers.1,2,3 In both can-
cerous and precancerous cells of  mammary, 
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prostate and ovarian tissues, the regio-
specific metabolism of  estradiol produces 
‘4-hydroxy estradiol (4-OHE2)’ by CYP1B1 
that was reported to be one of  the major 
reason for oncogenesis.4 In cancer cells these  
metabolite further oxidized to 3, 4-estradiol 
quinone that forms depurinating adducts 
with DNA and tubuline leading to geno-
toxic mutations.5,6,7,8,9,10,11,12 Therefore, the 
rate and extent of  CYP1B1 expression in 
endomatrium, mammary and ovarian tissues 
can be considered as potential biomarker 
for hormonal oncogenesis.2,5,13,14,15

Recently we reported two series of  com-
pounds with different chemical scaffold 
with potent and selective inhibitory activ-
ity on CYP1B1.16,17 This has suggested that 
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some molecular properties are similar for these two 
chemical scaffolds in terms of  their interaction with 
the target protein. The current investigation is aimed at 
unraveling them with a series of  computational tech-
niques that may help in designing CYP1B1 selective 
inhibitors.
Active sites of  CYP1 family enzymes have ≤ 40% 
of  amino acid sequence homology and CYP1A1 and 
CYP1A2 shares ≥ 55% sequence homology. So it is quite 
difficult to design a highly specific and selective inhibitor 
against these iso-enzymes.18,19 Several attempts have been 
reported on the development of  computational models 
with the intention of  predicting enhanced potency and 
selectivity of  inhibitors. Steric and electrostatic proper-
ties of  the molecules are the two most important param-
eters in predicting the binding affinity and selectivity 
towards the target proteins. These studies provide useful 
information for future drug design efforts. Comparative  
Molecular Field Analysis (CoMFA) and Comparative 
Molecular Similarity Indices Analysis (CoMSIA) were  
employed to study the structure activity relationship of  
a series of  molecules having same chemical scaffold by 
overlaying the 3D structures of  ligands. But these methods 
have a limitation in the absence of  protein that interacts 
with them in biospace. Molecular dynamic (MD) simula-
tions based methods were recently described for study-
ing ligand-protein interactions at molecular level.20,21,22

In the current study we employed Shape and Electro-
static similarity assessment,23 of  two highly specific and 
potent CYP1B1 inhibitors TMS and BNUB-13. More-
over binding site was also evaluated by site map, which is 

novel and effective algorithm for accurate and rapidac-
tive site identification. We also assessed the druggabil-
ity of  active site pocket of  CYP1B1 (PDB ID: 3PM0)24 
by comparing the DScore values of  four known and 
potent inhibitors of  CYP1B1, Tetramethoxy stilbene 
(TMS),25 alphanaphthafalvone (ANF)26,27 BNUB-1316 
and BNUA-317 Thus we believe this study will provide 
useful insight in designing selective and potent CYP1B1 
inhibitors.

MATERIAL AND METHODS
Shape and electrostatic analysis was performed by using  
VROCS (3.1.2) and EON (2.1.0) of  OpenEye toolkit.28  
using TMS (reference molecule) and BNUB-13 (test 
molecule). Molecular docking and Site map analy-
sis were done on Maestro 8.5. and SiteMap module 
of  Schrodinger LLC suite.29 respectively, running on 
RHEL5 operating system installed on DELL Precision 
T3400 machine (n-series, Intel core 2 Quad processor, 
8GB RAM, 500GB). Both molecules were prepared 
in Glide and energy minimized using ligprep module  
implemented in Maestro 8.5.111. The co-crystal structure  
of  CYP1B1 (PDB Code: 3PM0) was downloaded from 
www.rcsb.org. For validation of  software the internal  
ligand was extracted and redocked into the active site. 
Protein was prepared for docking through Protein 
preparation wizard and Grid was generated through 
grid preparation wizard picking ligand to specify the 
binding site. Docking was performed using GLIDE 5.0  
with XP protocol. The docked conformers were ana-
lyzed through XP-visualizer. Default parameters were 
employed during all the computational studies.

Shape and Electrostatic Study

Shape and electrostatic comparative study was done 
because it gives an idea about physicochemical aspects 
of  molecular recognition. Thus comparing shape com-
plementary and electronic features of  our molecule with 
BNUB-13 has revealed important structural framework 
which realized the binding affinity, which in turn func-
tional potency (Figure 1). For these we employed the 
ROCS algorithm (Rapid Overlay of  Chemical Struc-
tures) and EON of  OpenEye Toolkit. During the round 
of  ROCS analysis BNUB-13 and TMS were superim-
posed based on their shape agreement. Then they were 
subjected to electrostatic correlations using EON and 
results were analyzed based on their Shape and Electro-
static  Tanimoto as shown in Figure 2. 
Binding site of  CYP1B1 was evaluated by Sitemap tool 
of  Schrödinger. All the molecules were separately tested  
for calculation of  Dscore, hydorphilicty, hydrophobicity,  
H bond donor and acceptor properties. These com-

Figure 1: Potent CYP1B1 inhibitors used for druggability 
predictions.
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puted properties are used to calculate the site score and 
Dscore. Depending on these scores, the druggability of  
target was also predicted.

In-silico ADME prediction

Pharmacokinetic properties (ADME Absorption, Distri-
bution, Metabolism and Excretion) are the crucial part 
of  new drug development procedure as many molecules  
are withdrawn from the market due to their poor phar-
macokinetic profiles. We used QikProp, version 3.0, 
Schrödinger, LLC, New York, 2005, for prediction of   
ADME properties. To calculate drug likeliness properties  
we consider various parameters such as molecular 
weight, H bond donor, H bond acceptor, polar surface 
area and predicted aqueous solubility and human oral 
absorption.

RESULTS AND DISCUSSION

Shape and electrostatic studies

The rational in comparing shape and electrostatic prop-
erties is that it is primary topological determinants of  
molecule, which can be considered for better fitness and 
binding in the active site pocket of  protein or enzyme. 
Recently Bostrom et al, reported the discovery of  
potent fibrinolysis inhibitor by Shape and Electrostatic 
Complementarity to the Drug Tranexamic Acid which  
has the potential for the treatment of  bleeding disor-
ders.23 By the comparative shape and electrostatic study 
we got good correlation between TMS and BNUB-13. 
Shape coefficient between two molecules was 0.769 
while electrostatic coefficient was found to be 0.464 
indicating that BNUB-13 was quite similar to TMS (Fig-
ure 3). Owing to the structural simiarity, the newly iden-

tified molecule could efficiently fit into the active site 
pocket of  CYP1B1. 
TMS and ANF are non-selective CYP inhibitors but 
when the non-polar bridge is substituted by a polar urea 
linker as in biphenyl urea the specificity of  molecule 
was found to increase. It has been observed in BNUB-
13 with IC50 value of  69 nM and specificity of  62-fold. 
Hybridizing the structures of  ANF and BNUB-13 we 
got new scaffold which maintained its planarity and the 
cyclized urea linker resembled ANF. Surprisingly the 
resultant molecule was highly specific and emerged as 
the most potent inhibitor (BNUA-3) with IC50 value of  
3 nM. In-scilico and in-vitro results were in coherence with 
the important structural features that would guide the 
design and discovery of  potent and specific CYP1B1 
inhibitor. 

Molecular modeling studies 

The X-ray crystallographic studies reveal that CYP1B1 
has the rounder shape narrow slot-like substrate binding  
cavity, which gets occupied by ANF and hinder the 
interactions between heme iron-oxo intermediate and 
planner substrate.24 Molecular docking studies revealed 
the interactions between the terminal aromatic carbons 
of  BNUB-13 and reactive heme iron-oxo via van der  
Waals’ interactions (distance is < 5 ºA). The second  
aromatic ring of  urea moiety positioned in such a way 
that it shows the π-π interactions with hydrophobic 

Figure 2: Predicted three-dimensional shape and  
Tanimotoelectrostatic overlays of compounds TMS (A) and  

BNUB-13 (B).30

Figure 3: (A) Complete overlapping of TMS (silver color) and 
BNUB-13 (red color); (B) the display of shape and (C) electro-
static potentials for BNUB-13 with that of TMS in their neutral 
form. Blue color denotes electropositive areas, whereas red 
color shows electronegative areas. The calculated Tanimoto 
values depicted that BNUB-13 is electrostatically very similar 

to TMS.
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Phe231 and Phe268 residues of  CYP1B1. In addi-
tion, BNUB-13 also display the polar interactions via 
H-bonding with Asp333 (Figure 4C). Overall, these  
interactions of  the urea derivative with CYP1B1 con-
tribute the potent inhibition of  CYP1B1 at low nano-
molar IC50 value.
Similarly aromatic ring C of  BNAU-3 flanks towards 
the heme atom due to presence of  heteroatom contain-
ing ring B and interacts with heme via van der Waals 
interactions (distance is <5 ºA) in a way similar to the 
benzo[a]chromane ring of  ANF. The geometry of  
BNAU-3 facilitates interaction in such a way that O 
atom of  ring C comes nearest to iron cofactor of  heme. 
Moreover ring A and B display hydrophobic interaction 
with Phe231. Additionally BNAU-3 also interacts with 
Phe134 residue via π-π interactions. These interactions 
with CYP1B1 make the compound more potent inhibi-
tor of  CYP1B1. All molecules occupied the rounder 
shape narrow slot-like substrate binding cavity and 
interact with the Phe231 and Phe268, and one aromatic 
ring interact with heme moiety. But in case of  BNAU-
3, it has additional polar H bonding with Asp333 that 
make this molecule more selective towards the CYP1B1 
isoform. Similarly in case of  BNUB-13 there is addi-
tional hydrophobic interaction with Phe134 residue and 
position of  C ring O atom is very close to iron of  heme 
moiety leading to most potent and selective inhibition.

Characterization of CYP1B1 active site as druggable 
target

Site map tool was used to find out whether a pro-
tein can be a druggable target or not. For validation 
of  druggability of  active site of  CYP1B1 enzyme 
(PDB ID: 3PM0) we used four potent CYP1B1 
inhibitor ANF (50 nM), TMS (6 nM), BNUB-13 
(69 nM) and BNUA-3 (3 nM). The results were  
summarized in Table 1. Dscore as reported earlier, it 
is calculated based on the sitescore, size, hydrophilicity, 
hydrophobicity, enclosure, exposure and H bond donor 
and acceptor values.31 The Figure 5 (A) comprise of  the 
ANF binding site map in active site pocket of  CYP1B1 
while. The calculation is based on the hydrophobic-
ity of  the pocket for the druggability and expresses 
in terms of  numerical values 0-2. Highly hydrophilic  
cavities are considered as undruggable target or protein  
and have the value of  0, while 1 is considered difficult 
to target and 2 falls in druggable target category. Site 
map analysis for complexes of  all the four ligands with 
CYP1B1 was performed to check the druggability of  the 
target protein. The calculation using all the four com-
plexes displayed that the protein is druggable because 
all molecules showed D-score that expressed them 

as druggable site score 2 (Table 1). The hydrophobic 
score of  ANF was found be better than the other three. 
BNUB-13 having the better hydrophobic interaction 
than BNUA-3, but it is less potent than BNUA-3 due to 
its polar bridge (higher hydrophilic score). We suppose 
that the compounds having less polar bridges perform  
well in terms of  improving potency. All physicochemical  
properties obtained were identical in all molecules 
(Table 1).

Figure 4: 3D interaction diagram of (A) ANF, (B) TMS (C) 
BNUB-13 and (D) BNUA-3 at active site of CYP1B1 enzyme  

and showing the interactions with amino acid residues  
present at the active site (PDB ID: 3PM0).

Figure 5: Binding mode analysis of ANF (A), TMS (B), BNUA-3 
(C) and (D) BNUB-13. The various crucial interactions are red  

color denotes H Bond acceptor, blue color shows H-Bond  
donor, Yellow color indicates hydrophobic interaction and 

green color represents hydrophilic interaction.
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prediction of  druggability of  CYP1B1 generate potential  
3D structural information of  receptor giving vital informa-
tion. Having this information of  whether a given protein is  
druggable or not at an early stage of  drug discovery 
therefore has the potential of  saving considerable time 
and expense. In silico ADMET calculations showed that 
all the molecules complied with Lipinski rule of  five 
and hence have the highest probability to become drug 
(drug-likeness). 
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SUMMARYPICTORIAL ABSTRACT
The combined approach of ligand and receptor aspect 
were considered for generation of in silico data.
Shape and electrostatic studeis reveals the structural 
complementary that are prerequisite for inhibitory 
activity. 
Binding mode analysis gave the receptor 3D structural 
information that can be used for lead optimization in 
drug discovery, to modify the ligand to enhance its 
binding affinity and to improve its physico-chemical 
properties.
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