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SARS-CoV-2: The Prominent Role of Non-structural 
Proteins (NSPS) in COVID-19
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ABSTRACT
COVID-19, an infectious contagious viral (SARS-CoV-2) disease, associated with 
morbidity and mortality from respiratory pandemic worldwide. Currently, COVID-19 has 
no targeted treatment strategies and has been declared by WHO as a global health 
emergency. SARS-CoV-2, an enveloped, positive-sense, betacoronavirus (βCoV) 
spreading rapidly due to its potential pre- and asymptomatic transmission (silent 
transmission). The viral replicase single-stranded genome encodes for two open reading 
frame genes (orf1a and orf1b), that are translated into two polyproteins, pp1a and pp1b.
Viral proteases including papain-like protease (PL-PRO) and chymotrypsin-like protease 
(3CL-PRO) pre-processes and fragments the polyproteins into 16 non-structural proteins 
(Nsps) that are assembled into replicase-transcriptase complex and exhibit multiple 
enzymatic activity. To rationalize their evolutionary success and develop improved 
control strategies, understanding the main functions and interactions of non-structural 
proteins of SARS-CoV-2 will be essential. Based on the existing published literature, this 
review summarizes the knowledge on multiple pathologic functions of Nsps in COVID-19. 
This review is hoped to help the researchers to understand the significant role of non-
structural proteins in COVID-19 and provide a reference for future studies.

Key words: COVID-19, SARS-CoV-2, Non-structural proteins, Open reading frames, 
Polyproteins, Phylogenetic analysis.

Key Message: The putative non-structural proteinsof SARS-CoV-2 assembled into 
replicase-transcriptase complex and exhibit multiple enzymatic activity and play a vital 
role in COVID-19.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19), 
a pandemic infectious respiratory disease 
caused by an enveloped, positive-sense, 
single-stranded RNA novel coronavirus 
named as SARS-CoV-2.1,2 As of  23 July 2020, 
WHO reported 1,50,12,731 cases globally 
in 216 countries including 6,19,150 deaths 
for the Corona outbreak 2019 and it has 
been declared as a global health emergency 
(https://www.who.int/emergencies/
diseases/novel-coronavirus-2019). The 
virus has locked down the millions and 
the catastrophes are threatening the global 
economy.3 COVID-19 is a highly contagious 
disease associated with morbidity and 
mortality due to its potential pre- and 
asymptomatic transmission.4 

SARS-CoV-2 belongs to the order 
Nidovirales, the family Coronaviridae, the 
genus Betacoronavirus and the species 
Severe acute respiratory syndrome-related 
coronavirus.5 SARS-CoV-2, which is 
responsible for the COVID-19 pandemic, is 
spreading rapidly all over the globe due to 
the transmission from human-to-human.6 

The SARS-CoV-2 reproductive number 
is 2.68 with an incubation period of  6.4 
days (range 2.1 to 11.1 days) and the time 
of  onset of  symptoms is between 1 and 
14 days, usually 5 days.7 Studies have found 
that majority of  COVID-19 transmission 
is due to silent spreaders that do not 
show symptoms.8 The silent transmission 
of  SARS-CoV-2 infection is due to virus 
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shedding patterns in asymptomatic patients.9 Recent 
studies indicates that SARS-CoV-2 shedding may 
begin 2 to 3 days before the onset of  first clinical signs 
and symptoms.10 Regarding the potential routes of  
SARS-CoV-2 transmission, respiratory route was the 
most predominant route in humans. However, recent 
evidences indicates that the SARS-CoV-2 may also be 
transmitted through the fecal-oral route, since the virus 
was found in endoscopic and stool specimens from 
COVID-19 patients.11 The ongoing epidemic originally 
identified as pneumonia of  unknown etiology in a group 
of  patients in Wuhan, China.12 The Chinese Centre 
for Disease Control and Prevention (CDC, China) 
subsequently categorized the clinical manifestations of  
COVID-19 based on the severity with a wide range of  
clinical symptoms ranging from asymptomatic patients 
to septic shock and multiorgan dysfunction.13 The most 
frequently reported symptoms of  COVID-19 includes 
fever, dry cough and fatigue.14 In addition to pulmonary 
symptoms, 2% to 10% of  COVID-19 patients reported 
GIT manifestations such as nausea, vomiting, diarrhoea 
and abdominal pain.15 Extra pulmonary and systemic 
manifestations such as cardiac arrhythmias, cardiac 
failure, deep vein thrombosis, renal tissue damage, 
liver damage, seizures, Guillain-Barre syndrome and 
confusion are caused by a direct attack of  SARS-CoV-2 on 
cardiac muscles, kidneys, blood vessels, liver and central 
nervous system with ACE2 receptors.16 Furthermore, 
SARS-CoV-2 targets male reproductive system due to 
high expression of  ACE2 and has been detected in 
semen.17 The complications include spermatogenic 
failure, autoimmune orchitis, hypogonadism, germ cell 
destruction, testicular dysfunction and infertility.18

Despite these recent discoveries, the current review 
aimed to summarize the existing literature on multiple 
pathologic functions of  non-structural proteins in 
SARS-CoV-2 replication and virulence.

SARS-CoV-2 genomic organization
Phylogenetic studies of  the SARS-CoV-2 have shown 
a nucleotide correlation of  96% with Bat-SL-RaTG13, 
88% with Bat-SL-Cov-ZC45 and Bat-SL-CoV-ZXC21, 
79.6% with SARS-CoV and 50% with MERS-CoV.19 
The analysis revealed that the single-stranded RNA 
genome (30kb) of  SARS-CoV-2 was 29,891 nucleotides 
in size (9860 amino acids) encoding up to 14 open 
reading frames (orfs).20,21 The 5´-and 3´- untranslated 
regions of  SARS-CoV-2 are identical to those of  
βCoVs in nucleotide sequence (≥83.6%). In genetic 
configuration, the genome is organized as 5´-replicase-
structural proteins along with accessory factors-3´. The 
5´ replicase genome encodes two open reading frame 

genes (orf1a and orf1b), that are translated into two 
polyproteins, pp1a and pp1b.22 These polyproteins 
were pre-processed and fragmented by viral proteases 
into 16 non-structural proteins (NSPS), which are 
assembled into replicase-transcriptase complex and 
exhibit multiple enzymatic activity (Table 1).23 The 
putative non-structural proteins in the replicase-
transcriptase complex includes the papain-like protease 
(Nsp3, PL-PRO), the main protease (Nsp5, Main 
protease (Mpro), chymotrypsin-like protease (3CL-PRO), 
the primase complex (Nsp7-Nsp8), the primary 
RNA-dependent RNA polymerase (Nsp12, RdRp), a 
helicase (Nsp13, triphosphatase, Hel), a guanine-N7 
methyltransferase (Nsp14, exoribonuclease, ExoN), an 
uridylate-specific endoribonuclease (Nsp15, NendoU) 
and a hetero-oligomeric complex (Nsp10/Nsp16, 
N7- and 2´ O-ribose methyl transferase complex).24 
The genomic 3´ end encodes as many as 13 orfs which 
includes four structural proteins such as spike (S), 
envelop (E), membrane (M) and nucleocapsid (N) along 
with nine potential accessory factors (Figure 1).25

Significant non-Structural Proteins (NSPs) in 
COVID-19
Non-structural protein 1
Nsp1, a membrane-associated host translation inhibitor 
protein which anchors replication complex to the 
cellular membranes. Nsp1 forms a complex with 
40S ribosomal subunit, that degrades host mRNAs 
by inducing an endonucleolytic cleavage near the5´-
untranslated region and thus inhibits host translation.26 

SARS-CoV-2 mRNAs are not prone to nsp1-mediated 
endonucleolytic degradation because of  the presence 
of  5´-end leader sequence.27 By suppressing host gene 
expression, the leader protein promotes efficient 
expression of  viral genes in infected cells and escape 
from the host immune response.28

Figure 1: SARS-CoV-2 genomic organization.
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Non-structural protein 2
Nsp2 plays a vital role in modulation of  host cell 
survival signalling pathway through interaction with 
host prohibitins (PHB and PHB2).29 Prohibitin (B-cell 
receptor associated protein-32) and prohibitin 2 
(repressor of  estrogen receptor activity) are ubiquitously 
expressed and present in several cell compartments 
like mitochondria, preserving functional integrity and 
defending cells from various stresses.30 The stabilizing 
mutation occurring inside the endosome-associated-
protein-like domain of  the nsp2 protein may account 
for highly contagious COVID-19.31

Non-structural protein 3
Nsp3, Papain-like protease (PL-PRO) is the largest 
cystine protease with a proteolytic core domain of  316 
amino acids responsible for cleaving first three cleavage 
sites at the N-terminus of  the replicase substrates 
(poly protiens).32 In addition to its role in viral protein 
maturation, Nsp3 has deubiquitinating/deISGylating 
activity and processes polyubiquitin chains linked to 
‘Lys48’ and ‘Lys63’ from cellular substrates to supress 
antiviral innate immune response of  the host cell.33,34 
Along with Nsp4 and other host proteins, Nsp3 engages 
in the rearrangement of  cytoplasmic double-membrane 
vesicle required for the replication of  SARS-CoV-2.35 
Nsp3 also prevents host Nuclear Factor Kappa B (NF-
κB) signalling and antagonizes innate immune response 
of  type I interferon by blocking phosphorylation, 
dimerization and subsequent nuclear translocation 
of  host interferon regulatory factor 3 (IRF3).36,37 The 
destabilizing mutation happening near the phosphatase 
domain of  the Nsp3 may suggest a potential mechanism 
that differentiates SARS-CoV-2 from SARS. Because 
of  its diverse actions, Nsp3 may provide new avenues 
for investigating the virus replication cycle in host cells, 
with the goal of  developing therapeutic agents to inhibit 
replication of  SARS-CoV-2. 

Non-structural protein 4
Nsp4, a membrane-spanning protein interacts with 
Nsp3 and other host proteins and plays a significant role 
in SARS-CoV replication through the rearrangements 
of  viral induced cytoplasmic double-membrane 
vesicles.38 The alpha helical (C-terminal) domain may 
be involved in protein-protein interactions that anchors 
the viral replicase-transcriptase complex to modified 
cytoplasmic membranes necessary for viral replication.39

Non-structural protein 5
Nsp5, chymotrypsin-like protease (3CL-PRO) or Main 
protease (Mpro), a key enzyme responsible for SARS-

CoV-2 replication.40 The Mpro exists in homodimer and 
has Cys-His dyad on active site which shows protease 
activity.41 Nsp5 digest replicase polyprotein (C-terminus) 
at 11 conserved sites to generate non-structural proteins 
(Nsp4-Nsp16), which plays a vital role in mediating viral 
replication and transcription and serves as a desirable 
target for discovery and development of  antivirals 
against COVID-19.42

Non-structural protein 6
SARS-CoV-2 non-structural protein 6 (Nsp6) binds 
with sigma receptor of  host endoplasmic reticulum and 

Table 1: Putative functions of SARS-CoV-2  
non-structural proteins.

Nsp Non-structural 
protein Putative function

Nsp1
Host translation 
inhibitor/leader 

protein

Inhibits host translation 
and facilitates viral gene 

expression in infected cells

Nsp2 Non-structural protein 
2

Modulation of host cell survival 
signaling pathway

Nsp3 Papain-like protease 
(PL-PRO)

Proteolytic cleavage at the 
N-terminus of the replicase 

poly protein to generate Nsp1, 
Nsp2 and Nsp3 

Nsp4 Non-structural protein 
4

Interacts with Nsp3 and 
promotes viral replication

Nsp5
Main protease (Mpro) 
/ chymotrypsin-like 

protease (3CL-PRO)

Proteolytic cleavage of 
C-terminus of the replicase 

poly protein

Nsp6 Non-structural protein 
6

Induces autophagosomes and 
inhibits the delivery of viral 

components to host lysosomes

Nsp7/
Nsp8 Primase complex Replication and transcription of 

viral genome

Nsp9 RNA-binding protein Binds to viral genomic ssRNA 
and promotes replication

Nsp10 Non-structural protein 
10 Viral mRNAs cap methylation

Nsp11 Non-structural protein 
11

Shortest peptide of orf1a 
polyprotein

Nsp12 RNA-dependent RNA 
polymerase (RdRp)

Replication and transcription of 
viral genome

Nsp13

Helicase (Hel) 
/ Nucleoside-

triphosphatase 
(NTPase)

Unwinds duplex RNA and DNA 
and helps in viral replication

Nsp14

Guanine-N7 
methyltransferase/ 

3´-5´exoribonuclease 
(ExoN)

RNA synthesis and replication

Nsp15

Nidoviral 
uridylate-specific 
endoribonuclease 

(NendoU)

RNA processing and interferon 
(IFN) antagonist

nsp16 2´ O-ribose 
methyltransferase Viral mRNAs cap methylation 
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initiates the induction of  autophagosomes.43 Generally 
sigma receptor activation regulates endoplasmic 
reticulum stress response. Nsp6-sigma receptor 
interaction restricts autophagosomal expansion, which 
is no longer capable of  delivering viral products to host 
lysosomes.44 Nsp3, Nsp4 and Nsp6 all together have the 
capability to induce double-membrane vesicles in which 
Nsp3 and Nsp4 are capable of  pairing membranes while 
Nsp6 has membrane proliferation ability.45

Non-structural protein 7/8 complex
Nsp7 binds with Nsp8 (8 subunits of  each) to form a 
hexadecamer known as primase complex that interacts 
with RNA-dependent RNA polymerase (Nsp12) and 
forms hetero-oligomeric complex (Nsp12-Nsp7/Nsp8) 
that may participate in SARS-CoV-2 replication.46 
Moreover, these Nsps can synthesize significantly longer 
products than oligonucleotide polymers. Nsp8 was 
predicted to have adhesins, essential for viral adherence 
and host invasion.47

Non-structural protein 9
Nsp9 acts as a single-stranded RNA-binding protein that 
mediates both viral replication and virulence. Nsp9, an 
essential protein binds RNA through oligosaccharide/
oligonucleotide fold-like fold that is unique to the class 
of  βCoVs and promotes viral replication.48 Nsp9 plays 
a crucial role in SARS-CoV virulence and may play a 
similar role in upholding functional integrity of  SARS-
CoV-2 due to the 97% sequence identity.49 Researchers 
have determined the structure of  Nsp9 and identified 
a peptide binding site which could prompt further 
research in understanding its role in COVID-19.50

Non-structural protein 10
Nsp10, an essential cofactor that activates guanine-N7 
methyltransferase (Nsp14) and 2´ O-ribose 
methyltransferase (Nsp16) and plays an important 
part in methylation of  mRNAs guanosine cap to 
promote transcription, splicing, polyadenylation and 
nuclear export of  viral mRNA.51 The hetero-oligomeric 
complex (Nsp10-Nsp14-Nsp16) may be a target for 
the development of  antivirals against pathogenic 
coronaviruses.52

Non-structural protein 11
Nsp11, a shortest peptide expressed at the end of  orf1a 
polyprotein of  SARS-CoV-2 replicase genome having 
85% amino acid similarity with bat-SL-CoVZXC21 and 
SARS-CoV.53

Non-structural protein 12
Nsp12, a RNA-dependent RNA polymerase (RdRp), is 
primarily responsible for replication and transcription 
of  the SARS-CoV-2 genome.54 The Nsp12 has ssRNA 
and ssDNA-dependent polymerase activity with no 
priming activity and is involved in post transcriptional 
gene slicing (PTGS).55 SARS-CoV-2 nucleotide 
polymerase was predicted to have 932 amino acids with 
N-terminal and a polymerase domain. The amino acid 
sequence alignment showed that SARS-CoV-2 Nsp12 
shared 96.35% similarity to SARS Nsp12. The Nsp12 
interacts with Nsp7/Nsp8 complex (Primase complex) 
and activates to form RNA synthesis machinery to 
replicate long RNA.56 On the other side, the SARS-
CoV-2 nsp12 possess seven conserved motifs (motifs 
A-E) in the polymerase active site, which are involved 
in a template and nucleotide binding and catalysis.57 
The hetero-oligomeric complex (Nsp12-Nsp7/Nsp8) 
could be the potential target (PDB ID:6M71) to inhibit 
the RdRp activity of  Nsp12 and helps researchers to 
identify a novel antiviral agent against SARS-CoV-2.58

Non-structural protein 13
Nsp13, Helicase (Hel) or Nucleoside-triphosphatase 
(NTPase), a multifunctional protein with a zinc-binding 
domain in N-terminus unwinds duplex RNA and DNA 
with a 5´ single-stranded tail in a 5´ to 3´ direction and 
plays an important role in central dogma of  the virus.59 
Despite its significant role in the replication of  SARS-
CoV-2 RNA, Nsp13 readily unwinds duplex DNA due 
to its functional cooperativity rather than structural 
interactions between helicase monomers.60 The helicase 
activity depends on magnesium and may exhibit various 
properties during unwinding of  RNA.61 Due to its 
NTPase and helicase activities, SARS-CoV-2 helicase 
plays a crucial role in replication and virulence and is 
considered as a target for antivirals.62

Non-structural protein 14
Nsp14, a bifunctional replicase subunit with 
exoribonuclease activity (proofreading) that acts 
in a 3´ to 5´ direction on both ssRNA and dsRNA 
and a guanine-N7 methyltransferase activity at its 
C-terminal.63,64 The Nsp10 interacts with Nsp14 and 
Nsp16 in order to form a dodecamer to enhance their 
enzyme activities and plays a key role in RNA synthesis 
and replication fidelity.65 The N-terminal portion of  
Nsp14 interacts with ATP-dependent RNA helicase 
(DDX1) C-terminal region which enhances replication 
process.66
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Non-structural protein 15
Nsp15, a Mn2+-dependent nidoviral uridylate-specific 
endoribonuclease (NendoU) that leaves 2´-3´-cyclic 
phosphatases 5´ to the cleave bond and performs various 
vital functions associated with RNA processing.67 
Nsp15 acts as interferon (IFN) antagonist and inhibits 
interferon-β production through an endonuclease 
activity-independent mechanism.68 Moreover, Nsp8 
and Nsp7/Nsp8 complex enhances endoribonuclease 
activity of  hexameric Nsp15.69

Non-structural protein 16
Nsp16, 2´ O-ribose methyltransferase facilitates 
methylation of  mRNA cap 2´ O-ribose to the 5´-cap 
structure of  viral mRNAs to form N7-methyl guanosine 
cap and plays an important role in methylation of  
viral mRNAs cap which is necessary for evading 
immune system.70,71 The enzymatic activity of  Nsp16 
is increased by interaction with Nsp10 and is essential 
for viral replication-transcription in host cells.72 With 
the ongoing threat of  SARS-CoV-2 virulence, it is 
important to use the highly conserved Nsp10/Nsp16 
heterodimer interface to establish new treatment 
strategies againstSARS-CoV-2.73

Due to the lack of  FDA approved drugs for the 
treatment of  human coronavirus infection and vaccines 
to prevent COVID-19, research against SARS-CoV-2 is 
ongoing globally. Furthermore, there are many SARS-
CoV-2 proteins that have been reported as possible 
targets for drugs.74 In addition to the structural proteins, 
non-structural proteins also play a significant role in the 
replication and virulence of  SARS-CoV-2. Bioinformatic 

tools can be used to predict drug-like properties, 
ADMET properties, toxicity profiles, bioactivity 
scores and antiviral properties for any experimental 
drug molecule. In silico molecular docking studies can 
be useful to predict the binding affinity between the 
experimental drug and the target protein (Table 2) and 
play a vital role in finding an inhibitor through structure-
based drug design. The key limitation of  the in-silico 
studies has false positive results and low coefficients 
of  correlation between the predicted binding energies 
and experimental values provided in previous research.75 
Despite the drawbacks, the molecular interactions, 
dock scores and binding energies provide potential 
information that can notify and guide further in vitro, in 
vivo and clinical studies.76

CONCLUSION
The ongoing COVID-19 pandemic clearly reflects a 
global public health issue. The novel coronavirus, SARS-
CoV-2 spreads rapidly due to its pre- and asymptomatic 
silent transmission. The review summarized multiple 
pathologic functions of  non-structural proteins in 
SARS-CoV-2 replication and virulence. Several Nsps 
assembled to form replicase-transcriptase and hetero-
oligomeric complexes and exhibit multiple enzymatic 
activity. Moreover, there is urgent need to identify and 
characterize potent antiviral compound against specific 
targets (Nsps) to combat the emerging COVID-19 
pandemic. Our review might contribute by providing 
substantial information regarding the role of  SARS-
CoV-2 non-structural proteins in COVID-19. 

Table 2: Literature representing protein data base crystal structures of SARS-CoV-2 non-
structural proteins.

Nsp PDB Id Protein (PDB) References

Nsp3 6W6Y Crystal structure of ADP ribose phosphatase of nsp3 from 
SARS-CoV-2 

77

Nsp5 6LU7 SARS-CoV-2 main protease in complex with an inhibitor 
N3

78

Nsp7/Nsp8 6YHU Crystal structure of the nsp7-nsp8 complex of SAR-CoV-2 79

Nsp9 6WXD SARS-CoV-2 Nsp9 RNA-replicase 80

Nsp12 6M71 SARS-CoV-2 RNA-dependent RNA polymerase in 
complex with cofactors

81

Nsp15 6W01 Crystal structure of nsp15 Endoribonuclease from SARS-
CoV-2 in the complex with a citrate

82

nsp16-nsp10 
complex 6W4H Crystal structure of nsp16-nsp10 heterodimer from SARS-

CoV-2 in complex with S-adenosylmethionine

83
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SUMMARY

• COVID-19, a pandemic respiratory disease 
associated with high morbidity and mortality 
worldwide.

• Coronavirus disease 2019 is caused by a novel 
coronavirus named as “SARS-CoV-2”.

• The SARS-CoV-2 genome encodes as many as 
14 open reading frames including orf1a, orf1b, 4 
structural proteins and 9 accessory proteins.

• The polyproteins pp1a and pp1b translated 
from open reading frames (orf1a and orf1b) 
are preprocessed and fragmented in to 16 non-
structural proteins.

• Several Nsps assembled to form replicase-
transcriptase and hetero-oligomeric complexes 
and plays a significant part in viral replication and 
virulence.

• Nsps could be appropriate therapeutic targets 
for investigating replication and pathogenesis of 
SARS-CoV-2.
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