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ABSTRACT
Design and synthesis of a new series of ethyl 7-methoxy-2-substituted-3-(substituted 
benzoyl) indolizine-1-carboxylates 2a-i was achieved and screened for their in vitro 
inhibitory activity against COX-2 enzyme. Compound 2a and 2c emerged as promising 
COX-2 enzyme inhibitor with IC50 of 6.56 and 6.94 µM respectively from the synthesized 
series when compared to Celecoxib and Indomethacin as selective and nonselective 
standards, respectively. Computational docking study identified the possible reasons for 
such activity that may be due to the cis configuration of the indolizines that resulted in 
the most stable conformation similar to that of Indomethacin. 
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INTRODUCTION
Indolizines are bicyclic heterocyclic com-
pounds with various promising pharmaco-
logical properties.1-3 With regard to positions 
there are nine non-equivalents around the  
bicyclic indolizine structure. Several synthetic  
strategies have been adopted to obtain  
substituted indolizine analogues with various  
functional groups.1, 4-7 Some of  the biologi-
cally important natural products and syn-
thetic pharmaceuticals contain indolizine 
pharmacophore as an important N-fused 
heterocycles.8-18 Accordingly, synthesis and 
derivatization of  indolizines have attracted  
considerable attention of  medicinal chemist  
over the decades.19-33 Particularly the 3-benzoy
lindolizines are attractive since their deriva-
tives have been used as pharmacologically  
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interesting compounds and their vital role  
as the synthetic intermediates for 3-substi-
tuted indolizines is also apparent.34 Indoli-
zine system is isoelectronic with indole  
nucleus and signifies a group of  heterocyclic  
compounds structurally associated to purines.  
Several indolizine analogues have been 
reported for various pharmacological prop-
erties such as analgesic,35, 36 anti-inflammatory,37  
5HT3 receptor antagonist,38 anticholinergic,39  
anticancer,40-42 estrogen receptor binding,43 
antioxidant,44, 45 antimicrobial,46 antimutagenic,47  
CNS depressant48 and hypoglycemic activi-
ties.49,50 Cyclooxygenase (COX) enzyme 
mainly occurs in two isoforms COX-1 and 
COX-2 that have 60% identity of  their 
sequence and the latter one is the key enzyme  
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in the biosynthetic pathway leading to the development 
of  prostaglandins, which are mediators of  inflammation.51  
The conventional nonsteroidal anti-inflammatory drugs 
(NSAIDs) tend to exhibit unwanted side effects such 
as gastrointestinal, cardiovascular and renal complica-
tions.52 Literature survey reveals that the overexpression 
of  particularly cyclooxygenases-2 enzyme, promotes 
multiple events involved in tumorigenesis; in addition, 
several studies demonstrates that the inhibition of  
cyclooxygenases-2 can delay or prevent certain forms 
of  cancer.53

In continuation of  our studies on polymorphism behavior  
of  heterocyclic compounds54-56 and pharmacological 
screening of  heterocyclic compounds for anticancer,40,57  
anti-mosquito58,59 and anti-TB60 properties, herewith 
we undertake design of  proposed compounds based 
on Lipinski rule of  five61 and synthesis of  novel ethyl 
3-(substitutedbenzoyl)-7-methoxy-2-methylindolizine-
1-carboxylates (Scheme-1) and screen them for in vitro 
COX-2 inhibitory activity. In addition, computational 
studies to study the conformational impact on the binding 
and inhibitory activity.

MATERIALS AND METHODS
General chemistry
All the commercially available chemicals were purchased  
from Sigma-Aldrich chemicals and all the chemical reac-
tions were carried out in hot-air dried glass wares under 
nitrogen atmosphere using dry solvents. NMR (300, 400 
MHz) spectra were recorded at ambient temperature 
using CDCl3 and DMSO-d6 as a solvent using Bruker-400  
spectrometer. Chemical shift values are measured in  
δ ppm and were referenced with tetramethylsilane 
(TMS). The peak multiplicities were given as s, singlet;  
d, doublet; t, triplet; q, quartet; m, multiplet. LC-MS 
analysis was performed on Agilent LC-1200 series coupled  
with 6140 single quad mass spectrometer with ESI 
+ve and –ve mode, MS range 100-1500. Perkin Elmer 
CHNS analyser was used to perform elemental analysis. 

GENERAL PROCEDURE FOR THE SYNTHESIS OF 
4-METHOXY-1-(2-(SUBSTITUTEDPHENYL)-2-
OXOETHYL)PYRIDINIUM BROMIDE (1A-D)
TO A STIRRED solution of  4-methoxypyridine 
(0.0091 mol) in dry acetone (10 mL), 4-substitued-
phenacylbromide (0.0091 mol) was added and at room 
temperature the reaction mixture was stirred for 5 h.  
Completion of  the reaction was checked on thin 
layer chromatography. The product separated was 
filtered, recrystallized using ethanol as solvent and  

dried at room temperature to afford 98-99% yield of  
1-(2-(4-substituedphenyl)-2-oxoethyl)-4-methoxypyri-
dinium bromides 1a-d.

1-(2-(4-Cyanophenyl)-2-oxoethyl)-4-
methoxypyridinium bromide (1a)
Appearance: Light yellow colour solid. Yield 98%.  
1H-NMR (400 MHz, DMSO-d6) δ = 8.96-8.94 (d,  
J = 7.2 Hz, 2H), 8.52-8.50 (d, J = 7.0 Hz, 2H), 7.90-7.88 
(d, J = 7.2 Hz, 2H), 7.58-7.56 (d, J = 8 Hz, 2H), 6.29 (s, 
2H), 4.14 (s, 3H); LC-MS (ESI, Positive): m/z: (M+H)+: 
253.2.

1-(2-(4-Fluorophenyl)-2-oxoethyl)-4-
methoxypyridinium bromide (1b)
Appearance: White colour solid. Yield 99%. 1H-NMR 
(400 MHz , DMSO-d6) δ = 8.72-8.70 (d, J = 7.0 Hz, 
2H), 8.75-8.67 (d, J = 7.2 Hz, 2H), 8.30-8.27 (m, 2H), 
8.13-8.10 (t, J = 8.8 Hz, 2H), 6.28 (s, 2H), 4.19 (s, 3H); 
LC-MS (ESI, Positive): m/z: (M+H)+: 246.12.

1-(2-(4-Bromophenyl)-2-oxoethyl)-4-
methoxypyridinium bromide (1c)
Appearance: White colour solid. Yield 98%. 1H NMR 
(400 MHz , DMSO-d6) δ = 9.10-9.08 (d, J = 7.2 Hz, 
2H), 8.24-8.22 (d, J = 7.0 Hz, 2H), 8.02-8.00 (d, J = 7.2 
Hz, 2H), 7.72-7.70 (d, J = 8 Hz, 2H), 6.24 (s, 2H), 4.15 
(s, 3H); LC-MS (ESI, Positive): m/z: (M+H)+: 306.2.

4-Methoxy-1-(2-(3-methoxyphenyl)-2-oxoethyl)
pyridinium bromide (1d)
Appearance: Yellow colour solid. Yield 99%. 1H-NMR 
(400 MHz, DMSO-d6) δ = 9.02-9.00 (d, J = 7.2 Hz, 2H), 
8.54-8.52 (d, J = 7.2 Hz, 2H), 7.49-7.47 (d, J = 7.2 Hz, 
1H), 7.36-7.31 (t, J = 7.2 Hz, 1H), 7.15 (s, 1H), 7.10-7.08 
(d, J = 7.2 Hz, 1H), 6.27 (s, 2H), 4.10 (s, 3H), 3.88 (s, 
3H); LC-MS (ESI, Positive): m/z: (M+H)+: 258.2.

General procedure for the synthesis of 
ethyl 7-acetyl-3-(substitutredbenzoyl)-2-
substitutedindolizine-1-carboxylate (2a-i)
To a stirred solution of  1-(2-(substitutedphenyl)-2-oxoethyl)- 
4-methoxypyridinium bromide (0.00156 mol), in dry 
dimethylformamide (15mL), was added ethyl propio-
late (0.00156 mol) and K2CO3 (0.0031 mol). At room 
temperature the reaction mixture was stirred for 30 min 
and reaction completion was monitored on TLC. After 
reaction completion, the solvent was evaporated under 
reduced pressure and diluted with ethyl acetate. Water 
and brine was used to wash organic layer and dried over 
sodium sulphate. The crude compound was purified 
by column chromatography to afford 66-80 % yield 
of  compounds 2a-i. Physicochemical constants of  the 
characterized compounds are tabulated in Table 1.
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COX-2 inhibition activity
The title compounds 2a-i were screened for human 
recombinant COX-2 inhibitory activity using an enzyme 
immunoassay kit. IC50 is the concentration of  test and  
standard compounds required to produce 50% inhibition  
of  human recombinant COX-2 by means of  three deter-
minations using the enzyme linked immuno sorbent 
assay kit (Table 2). Significant differences were detected 
between treatments (F10,32 = 108.7; p< 0.001). Test 
compound 2a with nitrile group on phenyl ring which 
is connected to indolizine nucleus through carbonyl 
group emerged as promising COX-2 enzyme inhibitor 
with IC50 of  6.56 µM from the series when compared to 
selective (Celecoxib) and nonselective (Indomethacin) 
standard compounds with their inhibitory activity at 
0.05 and 6.8 µM, respectively. Compound 2c exhibited 
moderate COX-2 enzyme inhibition activity with IC50 
of  6.94 µM.

Computational Studies
Molecular docking
The crystal structures of  COX-1 and COX-2 have 
sequence identity of  60 % 68 The active site of  both iso-
forms have a typical active site that have a hydrophobic 
long channel. Mapping of  this channel illustrated that it 
has a number of  hydrophobic residues such as Leu 384, 
Phe 381, Tyr 385, and Trp 387 beside other residues 
such as Arg 120, His 90. Non-selective NSAIDs are all 
bound to this hydrophobic channel by interactions of  
their carboxylate anionic group with the cationic guani-
dinium group of  Arg 120 forming salt bridge. In addi-
tion, they form hydrogen bond with Tyr 355. 
The binding of  Indomethacin as a non-selective COX 
inhibitor has shared binding mode in both COX-1 and 

COX-2 hydrophobic channel in which the chloro atom  
at para-phenyl moiety interacts with Leu 384. The benzoyl  
carbonyl C=O group is essential in hydrogen bond  
formation with the hydroxyl group of  Ser 530 and Val 
349. The phenyl part of  the benzoyl moiety shared by 
hydrophobic interactions with Leu 384, Phe 381, Tyr 
385, and Trp 387. The indole scaffold participates by a 
hydrophobic interactions as well with Val 349.68,69

Indomethacin has many conformations but, the cis  
conformation around the C=O in which both para-
chloro phenyl moiety and indole moiety are oriented 
in the same direction has achieved higher selectivity 
toward COX-2 inhibition 70.
The main difference between COX-1 and COX-2 bind-
ing site is the presence of  hydrophilic side pocket in 
COX-2 only just beyond the hydrophobic channel. The 
selective COX-2 inhibitor Celecoxib has a hydrophilic 
sulfonyl amino side chain (H2N-SO2) that allows the 
drug to fit in this hydrophilic side pocket and forming 
strong hydrogen bonding with His 90, Gln 192 and Arg 
513. Celecoxib does not have a carboxylic group as well 
so, the salt bridge with Arg 120 is not found. In other  
words, the binding mode of  non-selective COX inhibi-
tors is different from those of  selective ones due to 
structural basis in COX-2 isoform itself. Also. Celecoxib 
does not inhibit COX-1 at therapeutic concentrations 
effective on COX-2.
In this work, a series of  novel indolizine analogues has 
been synthesized and tested for the COX-2 inhibition. 
A molecular docking of  the synthesized compounds 
against both COX-1 and COX-2 was done to interpret 
their possible binding mode. According to the docking 
results (Table 3), the docked compounds almost have  
the same in silico affinity of  Indomethacin. All  

Table 1: Physicochemical constants of ethyl 7-methoxy-3-(substitutredbenzoyl)-2-substi-
tutedindolizine-1-carboxylate analogues 2a-i.

Compound Mol formulae
(Mol mass) R1 R2 Yield (%)a,b m.p (°C) cLogPc

2a C20H16N2O4 (348) 4-CN H 76 165 3.9570

2b C21H18N2O4 (362) 4-CN CH3 68 191 4.4560

2c C19H16FNO4 (341) 4-F H 79 118 4.5293

2d C20H18FNO4 (355) 4-F CH3 72 137 5.0283

2e C21H20FNO4 (369) 4-F C2H5 70 124 5.5573

2f C19H16BrNO4 (402) 4-Br H 74 183 5.2493

2g C20H18BrNO4 (416) 4-Br CH3 70 148 5.7483

2h C20H19NO5 (353) 3-OCH3 H 80 116 4.4986

2i C21H21NO5 (367) 3-OCH3 CH3 74 130 4.9976
a Compounds 2a-i were characterized by physical and spectral data.
b Yields after purification by column chromatography.
c cLogP was calculated using ChemBioDraw Ultra 13.0v.
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Table 2: In vitro COX-2 inhibitory activity of ethyl 7-methoxy-
3-(substitutredbenzoyl)-2-substitutedindolizine-1-carboxylate 

analogues 2a-i.

Compound
Substituents

IC50 (µM) a

R1 R2

2a 4-CN H 6.56±0.03ab

2b 4-CN CH3 7.24±0.03c

2c 4-F H 6.94±0.03cd

2d 4-F CH3 7.52±0.03e

2e 4-F C2H5 7.95±0.03e

2f 4-Br H 7.27±0.03c

2g 4-Br CH3 7.54±0.03e

2h 3-OCH3 H 7.36±0.03f

2i 3-OCH3 CH3 7.35±0.03f

Indomethacin - - 6.84±0.03bd

Celecoxib - - 0.05±0.03a

a IC50 value is the concentration of test and standard compounds required to produce 50% inhibition 
of human recombinant COX-2 by means of three determinations using the enzyme linked immuno 
sorbent assay kit. IC50 value not sharing the same superscript letter differ significantly (p<0.05).

Table 3: Molecular docking results of ethyl 7-meth-
oxy-3-(substitutredbenzoyl)-2-substitutedindolizine-

1-carboxylate analogues 2a-i.

Compound
Computational binding affinity (Kcal/

mol)
COX-1 COX-2

2a -6.95 -7.51

2b -6.50 -7.15

2c -6.75 -7.35

2d -6.45 -7.20

2e -6.60 -7.30

2f -6.35 -6.95

2g -6.30 -6.90

2h -6.25 -6.75

2i -6.27 -6.70

Indomethacin -7.05 -7.65

Celecoxib -11.32 -13.85

compounds shared a common binding mode in the  
hydrophobic channel of  COX-2 in which the substituted 
benzoyl moiety and the indolizine ring were oriented to  
the same direction. The best poses for the active com-
pounds 2a and 2c have been superimposed on the best 
pose of  Indomethacin as well (Figure 1). 

Ethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1-
carboxylate (2a)
Appearance: Yellow colour fluffy crystalline compound; 
IR (neat cm-1): 2227, 1701, 1639, 1604; 1H-NMR (300 

MHz, CDCl3) δ = 9.82-9.79 (d, J = 7.2 Hz, 1H), 7.77 
(s, 1H), 7.76-7.64 (m, 5H), 6.81-6.77 (m, 1H), 4.41-4.33 
(q, J = 7.2Hz, 2H), 3.99 (s, 3H), 1.43-1.38 (t, J = 7.2 
Hz, 3H). LC-MS (ESI, Positive): m/z: (M+H)+ = 349.2; 
Anal. calculated for C20H16N2O4: C, 68.96; H, 4.63; N, 
8.04; Found : C, 68.82: H, 4.61: N, 8.07.

Ethyl 3-(4-cyanobenzoyl)-7-methoxy-2-
methylindolizine-1-carboxylate (2b)
Appearance: Light yellow colour crystalline compound;  
IR (neat cm-1): 2231, 1689, 1631, 1591; 1H-NMR (400 MHz,  
CDCl3) δ = 9.58-9.56 (d, J = 7.6 Hz, 1H), 7.79 (s, 1H), 
7.78-7.76 (d, J = 6.4 Hz 4H), 7.72-7.70 (d, J = 6.4 Hz, 
1H), 6.71-6.69 (m, 1H), 4.39-4.34 (q, J = 7.2 Hz, 2H) , 
3.95 (s, 3H), 2.11 (s, 3H), 1.42-1.39 (t, J = 7.2Hz, 3H); 
LC-MS (ESI, Positive): m/z: (M+H)+ = 363.12; Anal. 
calculated for C21H18N2O4: C, 69.60; H, 5.07; N, 7.73; 
Found : C, 69.59: H, 4.98: N, 7.79.

Ethyl 3-(4-fluorobenzoyl)-7-methoxyindolizine-1-
carboxylate (2c)
Appearance: Light brown colour crystalline compound; 
IR (neat cm-1): 1695, 1641, 1614; 1H-NMR (300 MHz,  
CDCl3) δ = 9.79-9.77 (d, J = 7.5 Hz, 1H), 7.85-7.80  
(m, 2H), 7.73 (s, 1H), 7.68 (s, 1H), 7.26-7.15 (m, 2H), 
7.25-7.21 (t, J = 8.4Hz, 2H), 6.78-6.75 (m, 1H), 4.37-4.33  
(q, J = 7.2 Hz, 2H), 3.97 (s, 3H), 1.41-1.36 (t, J = 7.2 Hz, 
3H);  LC-MS (ESI, Positive): m/z: (M+H)+ 342.2; Anal. 
calculated for C19H16FNO4: C, 66.86; H, 4.72; N, 4.10; 
Found : C, 66.82: H, 4.81: N, 3.99.
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Ethyl 3-(4-fluorobenzoyl)-7-methoxy-2-
methylindolizine-1-carboxylate (2d)
Appearance: Light brown colour crystalline compound; 
IR (neat cm-1): 1672, 1641, 1602; 1H-NMR (300 MHz,  
CDCl3) δ = 9.41-9.39 (d, J = 7.8 Hz, 1H), 7.76-7.68  
(m, 3H), 7.17-7.14 (m, 2H), 6.68-6.64 (m, 1H), 4.42-4.35 
(q, J = 7.2 Hz, 2H), 3.96 (s, 3H) , 2.19 (s, 3H), 1.45-
1.40 (t, J = 7.2 Hz, 3H); LC-MS (ESI, Positive): m/z:  
(M+H)+ 356.2; Anal. calculated for C20H18FNO4; C, 
67.60; H, 5.11; N, 3.94; Found; C, 67.56; H, 5.16; N, 3.88.

Ethyl 2-ethyl-3-(4-fluorobenzoyl)-7-
methoxyindolizine-1-carboxylate (2e)
Appearance: Light yellow colour crystalline compound; 
IR (neat cm-1): 1668, 1641, 1591; 1H-NMR (400 MHz, 
CDCl3) δ = 9.25-9.23 (d, J = 7.6 Hz, 1H), 7.76 (s, 1H), 
7.70-7.67 (m, 2H), 7.17-7.12 (m, 2H), 6.64-6.61 (m, 1H),  
4.40-4.35 (q, J = 7.2 Hz, 2H), 3.94 (s, 3H), 2.68-2.62  
(q, J = 7.2 Hz, 2H), 1.43-1.39 (t, J = 7.2Hz, 3H), 1.00-
0.97 (t, J = 7.2Hz, 3H); LC-MS (ESI, Positive): m/z 
(M+H)+ = 370.12; Anal. calculated for C21H20FNO4: C, 
68.28; H, 5.46; N, 3.79; Found: C, 68.29: H, 5.47: N, 
3.71.

Ethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1-
carboxylate (2f)
Appearance: Light brown colour crystalline compound; 
IR (neat cm-1): 1699, 1647, 1606; 1H-NMR (300 MHz,  

Figure 1: A) Binding mode of compound 2a in yellow colour 
superimposed with Indomethacin (elemental). B) Binding 
mode of compound 2c in pink colour superimposed with 

Indomethacin (elemental).
The analysis of the best poses of compounds 2a and 2c it was obvious that 
the compounds showed hydrogen bond formed by its benzoyl C=O group 
which was close to Ser 530 hydroxyl group than that of Indomethacin. The 
carboxylate C=O formed another hydrogen bond with Arg 120 with distance 
2.98 Ao when compared with that of Indomethacin 3.04 Ao. The present of 
nitrile group at the para position of 2a allows dipole interactions with Met 

522. The synthesized compounds do not have any hydrophilic side chains 
like Celecoxib and when Celecoxib was docked in COX-2 it showed differ-

ent interaction pattern (Figure 2)

Figure 2: Binding mode of Celecoxib in COX-2 binding site.
It showed hydrogen bond between Arg 120 and the sulfonyl oxygen. The 
second oxygen atom of sulfonyl group showed a hydrogen bond with His 

90. According to the previous docking results, it was clear that the structure 
similarity with Indomethacin allows the indolizine to share the same binding 
mode. However, they have different structural features like; the absence of 
methylene group attached to carboxylic moiety in Indomethacin and that 

was a feature in making their C=O group close to Arg 120. 
The position of nitrogen atom in indole scaffold is different than that of 

indolizine which allow the conformation of the indolizine to be in its stable 
form in the cis conformation (Figure 3).

Figure 3: Comparison of the stable conformations of both A) 
indolizine active analogue 2a and B) Indomethacin.
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CDCl3) δ = 9.82-9.79 (d, J = 7.2 Hz, 1H), 7.89-7.86  
(m, 2H), 7.83-7.75 (m, 4H), 7.62 (s, 1H), 6.82-6.78 (m, 1H),  
4.39-4.34 (q, J = 7.2 Hz, 2H), 3.98 (s, 3H), 1.41-1.35  
(t, J = 7.2Hz, 3H); LC-MS (ESI, Positive): m/z: (M+H)+ 
402.2, 404.4; Anal. calculated for C19H16BrNO4: C, 
56.73; H, 4.01; N, 3.48; Found : C, 56.72: H, 3.97: N, 
3.49.

Ethyl 3-(4-bromobenzoyl)-7-methoxy-2-
methylindolizine-1-carboxylate (2g)
Appearance: Light brown colour crystalline compound; 
IR (neat cm-1): 1697, 1670, 1639; 1H-NMR (300 MHz, 
CDCl3) δ = 9.44-9.41 (d, J = 7.5 Hz, 1H), 7.74-7.51 (m, 
5H), 6.67-6.64 (m, 1H), 4.40-4.33 (q, J = 7.2 Hz, 2H) , 
3.94 (s, 3H), 2.17 (s, 3H), 1.43-1.38 (t, J = 7.2 Hz, 3H); 
LC-MS (ESI, Positive): m/z (M+H)+ = 416.2, 418.2; 
Anal. calculated for C20H18BrNO4: C, 57.71; H, 4.36; N, 
3.36; Found : C, 57.76; H, 4.31; N, 3.37.

Ethyl 7-methoxy-3-(3-methoxybenzoyl)indolizine-
1-carboxylate (2h)
Appearance: Light brown colour crystalline compound; 
IR (neat cm-1): 1696, 1672, 1645, 1608;  1H-NMR (300 
MHz, CDCl3) δ = 9.82-9.79 (d, J = 7.2 Hz, 1H), 7.74 (s, 
1H), 7.44-7.31 (m, 4H), 7.12-7.08 (m, 1H), 6.78-6.74 (m, 
1H), 4.38-4.33 (q, J = 7.2 Hz, 2H) 3.96 (s, 3H), 3.87 (s, 
3H) 1.40-1.35 (t, J = 7.2 Hz, 3H); LC-MS (ESI, Positive): 
m/z (M+H)+ = 354.2; Anal. calculated for C20H19NO5; 
C, 67.98; H, 5.42; N, 3.96; Found; C, 67.95; H, 5.44; N, 
3.93.

Ethyl 7-methoxy-3-(3-methoxybenzoyl)-2-
methylindolizine-1-carboxylate (2i)
Appearance: Light brown colour crystalline compound; 
IR (neat cm-1): 1701, 1666, 1641, 1598;  1H-NMR (300  
MHz, CDCl3) δ = 9.47-9.44 (d, J = 7.8 Hz, 1H), 7.76  
(s, 1H), 7.41-7.38 (m, 1H), 7.38-7.24 (m, 2H), 7.11-7.08 
(m, 1H), 6.68-6.65 (m, 1H), 4.42-4.37 (q, J = 7.2 Hz, 
2H), 3.96 (s, 3H), 3.87 (s, 3H), 2.20 (s, 3H), 1.45-1.40 (t, 
J = 7.2Hz, 3H); LC-MS (ESI, Positive): m/z (M+H)+ = 
368.2; Anal. calculated for C21H21NO5; C, 68.56; H, 5.76; 
N, 3.81; Found; C, 68.54; H, 5.78; N, 3.79.

In vitro COX-2 inhibition activity
The synthesized test compounds 2a-i were subjected 
for in vitro human recombinant COX-2 enzyme inhibi-
tory activity using an enzyme immunoassay (EIA) kit 
according to a reported literature.62-64

Molecular docking with MOE 20.13.08
Molecular Operating Environment (MOE) 2013.08 
package license was purchased from Chemical Computing  
Group Inc, Sherbooke St, Montreal, QC, Canada,65 All 

the test compounds were built and saved as .MOE files. 
Rigid receptor was used as a docking protocol. Both 
receptor-solvent were kept as a “receptor”. Triangle  
matcher was used as a placement method. Two rescoring  
were computed, rescoring 1 was selected as London dG. 
Rescoring 2 was selected as affinity. Force field was used 
as a refinement.

Statistical analysis
Comparison of In vitro COX-2 inhibitory activity of  
indolizine analogs with selective (Celecoxib) and non-
selective (Indomethacin) standard compounds were 
carried out using one-way investigation of  variance 
(ANOVA) that examined the main effect of  treatment 
(ethyl 7-methoxy-3-(substitutredbenzoyl)-2-substitute-
dindolizine-1-carboxylate analogues 2a-i, Celecoxib and 
Indomethacin) on values of  IC50. Bonferroni test was 
used for post hoc analysis to account for the increased 
possibility of  type I error.66 Before ANOVA testing, data 
were transformed to ranks67 to fit better the assump-
tions of  the test. In all cases, a value of  p < 0.05 was 
considered statistically significant.

RESULTS AND DISCUSSION
Scheme-1 describes the general route to obtain the title 
compounds 2a-i. Intermediate compounds 1a-d were 
prepared by stirring 4-methoxylpyridine with substi-
tuted phenacyl bromides separately in the presence of  
acetone medium at room temperature as shown in step-I  
of  Scheme-1. The reaction completion was monitored 
on Thin Layer Chromatography (TLC) and after com-
pletion of  the reaction, the solid deposited was filtered, 
dried at room temperature and recrystallized using etha-
nol as solvent. NMR and LC-MS method was used to 
characterize the compounds 1a-d and yields obtained 
were in the range of  98-99%.
Substituted indolizine analogues 2a-i have been prepared  
by the reaction between 4-methoxy-1-(2-(substituted 
phenyl)-2-oxoethyl)pyridin-1-ium bromide and substituted 
alkynes in dimethylformamide medium in presence of  
anhydrous potassium carbonate as depicted in step-II 
of  Scheme-1. The completion of  the reaction was mon-
itored on TLC and all the products have been achieved 
within 30 min with constant stirring. The products were 
purified by column chromatography using 60-120 mesh 
silica gel using n-hexane - ethyl acetate as a solvent and 
the yield was found to be 68-80%. IR, NMR, LC-MS  
and elemental analysis methods were used to characterize  
the compounds 2a-i. ChemBioDraw Ultra 13.0v was  
used to calculate cLogP of  the compounds and the values 
were in the range of  3.9570-5.7483.
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CONCLUSION
The reactions performed to obtain indolizine analogues 
2a-i are eco-friendly as they are carried out at room 
temperature with satisfactory yield. The compounds 2a 
and 2c emerged as promising compounds for COX-2 
inhibition from the series when compared to standard 
substances Indomethacin and Celecoxib, which is also 
authenticated with docking studies.
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•	 Design and synthesis of a new series of ethyl 
7-methoxy-2-substituted-3-(substitutedbenzoyl) 
indolizine-1-carboxylates 2a-i was achieved by two 
step chemical reactions and screened for their in-
vitro inhibitory activity against COX-2 enzyme.

•	 Compound 2a and 2c emerged as promising COX-2 
enzyme inhibitor with IC50 of 6.56 and 6.94 µM, 
respectively from the synthesized series when 
compared to Celecoxib and Indomethacin as 
selective and nonselective standards, respectively.
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