Home | Articles
Published on:May 2021
Indian Journal of Pharmaceutical Education and Research, 2021; 55(2):383-394
Original Article | doi:10.5530/ijper.55.2.76

Design and Investigation of Alginate Coated Solid Lipid Nanoparticles for Oral Insulin Delivery


Authors and affiliation (s):

Marina Koland1,*, Rakshitha Bhaskar Anchan1, Sawan Ghetia Mukund2, Sindhoor Shridharan Mulleria1

1Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Deralakatte, Mangalore, Karnataka, INDIA.

2Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), Deralakatte, Mangalore, Karnataka, INDIA.

Abstract:

Introduction: The conventional subcutaneous administration of insulin has been associated with several limitations leading to poor patient compliance. The poor oral bioavailability of insulin due to degradation by gastrointestinal enzymes and secretions can be countered by the use of protective carriers such as solid lipid nanoparticles that are capable of being taken up by the Peyer’s patches. The aim of the investigation was to design and investigate alginate coated solid lipid nanoparticles (SLN) of insulin for oral administration. Materials and Methods: The SLN were prepared from glyceryl behenate and glyceryl monostearate and coated with mucoadhesive polymer, sodium alginate. The SLN were evaluated for size, shape, zeta potential, drug content, in vitro release and ex vivo drug permeation through goat intestinal mucosa and Caco-2 cell monolayer model. Results and Discussion: Transmission electron microscopy revealed spherical particles of uniform size distribution. In vitro drug release using the reverse dialysis method revealed that the alginate coating maintained the potency of insulin in simulated GI fluids and also provided sustained release. Absorption enhancement was demonstrated in ex vivo permeation studies in the goat intestinal mucosal model as well as in the Caco-2 cell monolayer model. The oral administration of alginate-coated insulin SLN in streptozotocin induced diabetic rats resulted in a significant hypoglycemic effect as compared to that of uncoated insulin-loaded SLN. The percentage glycemia at the end of 10 h was statistically significant (p<0.05) to oral insulin and the hypoglycemic levels reached were comparable to that of the conventional subcutaneous insulin. Conclusion: Alginate coated SLN has the potential of improving the absorption of insulin through intestinal mucosa and possibly its bioavailability.

Key words: Solid lipid nanoparticle, Insulin, Oral delivery, Sodium alginate, Glycerol monostearate, Hypoglycemia.

 




 

Impact Factor

IJPER - An Official Publication of Association of Pharmaceutical Teachers of India is pleased to announce continued growth in the Latest Release of Journal Citation Reports (source: Web of Science Data).

 

Impact Factor® as reported in the 2023 Journal Citation Reports® (Clarivate Analytics, 2023): 0.8

The Official Journal of Association of Pharmaceutical Teachers of India (APTI)
(Registered under Registration of Societies Act XXI of 1860 No. 122 of 1966-1967, Lucknow)

Indian Journal of Pharmaceutical Education and Research (IJPER) [ISSN-0019-5464] is the official journal of Association of Pharmaceutical Teachers of India (APTI) and is being published since 1967.

DOI HISTORY

IJPER uses reference linking service using Digital Object Identifiers (DOI) by Crossref. Articles from the year 2013 are being assigned DOIs for its permanent URLs